Cell-Cell Interactions

  • Dale Kaiser


All Gram-negative and Gram-positive bacteria that swarm differentiate elongated, hyper-flagellated, rod-shaped cells. Bacteria that lack flagella and cannot swim in liquid can nevertheless generate compact, organized, highly dynamic swarms on agar surfaces. Typically, these bacteria grow as elongated rods and they have polar engines, such as retractile type IV pili or other gliding engines to propel themselves over a moist surface. Myxobacteria are, perhaps, the best-studied non-flagellated swarmers. They are among the most socially adept and ubiquitous of bacteria that live in cultivated soil. They feed as an organized multicellular swarm on a wide variety of other soil bacteria. A feeding swarm spreads outward, forming regular multicellular structures as it expands. Shortly before potential prey have been completely consumed in their neighborhood, a swarm ceases growth with expansion and builds multilayered fruiting bodies with dormant spores. Both swarming/growth and starvation-induced fruiting body development depend upon the specificity and effectiveness of signals passed between cells. Some signals are small, diffusible molecules like a set of amino acids for the A-signal; others are particular proteins displayed on the surface of the outer membrane like the C-signal. A proposed signal that would be essential for the formation of multicellular rafts and multilayered mounds consists of contact junctions between pairs of cells that persist for a rather short time before disconnecting. When consumption outruns the available food supply, cells change their behavior: The swarm stops outward expansion and retreats, migrating inward to build hundreds of fruiting bodies, each containing about 105 spores. Sensing a deficiency of any amino-acylated tRNA, the swarm initiates its program of fruiting body development. For development, the swarm allocates some remaining resources to DNA synthesis in order that each spore will contain two complete copies of the genome. Energy reserves are also allocated to developmental protein synthesis. Myxococcus xanthus uses the stringent response to initiate a cascade of enhancer-binding proteins (EBPs) that organizes smooth transitions from exponential growth to preaggregation and then to mound building. EBPs are specific transcriptional activators that work with sigma-54-RNA polymerase to activate transcription at designated sigma-54 promoters. Expression of a downstream EBP is activated at the proper time by a preceding EBP in the cascade, ensuring the correct developmental order. Since EBPs typically activate gene expression in response to an environmental cue, it is thought that several of the cascade’s sensor kinases measure the level of particular intermediary metabolites indicative of approaching starvation. Early detection of starvation’s approach seems to limit spore formation because only 0.1–1% of the cells initiating fruiting body development become spores. Two EBPs initiate accumulation of the ppGpp starvation signal to manage the transition from growth to fruiting body development. Two other EBPs manage the subsequent preaggregation stage, while another two regulate gene expression for cell aggregation. The A-signal indicates that there are enough cells to build a fruiting body; the C-signal directs fruiting body construction and sets the time at which each motile rod-shaped cell becomes a spherical, nonmotile spore that is resistant to solar radiation. Later, when fresh prey bacteria return to the neighborhood of a fruiting body, the myxospores germinate, and the cells begin to elongate to feed on the new prey. M. xanthus assembles a new swarm that expands because cells reverse their gliding direction every 8–9 min, determined by a pacemaking oscillator. The pacemaker, in turn, drives a G-protein switch that coordinately exchanges the A- and the S-engines to opposite cell poles, and reverses the direction of gliding. Periodic reversals help the cells build multicellular structures of 102–103 cells. The ability of growing swarms of M. xanthus to build mounds is used by starving cells to build their large, mounded fruiting bodies. At each stage, building multicellular structures to precise specifications relies on the signals passed between cells.


Fruiting Body Stringent Response Multicellular Structure Swarm Cell Fruiting Body Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alberti L, Harshey RM (1990) Differentiation of Serratia marcesens 274 into swimmer and swarmer cells. J Bacteriol 172:4322–4328PubMedGoogle Scholar
  2. Allison C, Lai H-C, Gygi D, Hughes C (1993) Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol Microbiol 8:53–60PubMedCrossRefGoogle Scholar
  3. Beebe JM (1941) Mophology and cytology of Myxococcus xanthus. J Bacteriol 42:193–223PubMedGoogle Scholar
  4. Behmlander RM, Dworkin M (1994) Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176:6295–6303PubMedGoogle Scholar
  5. Belas G, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167:210–218PubMedGoogle Scholar
  6. Berleman JC, Bauer E (2005) A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol Microbiol 55:1390–1402PubMedCrossRefGoogle Scholar
  7. Berleman J, Chumley T, Cheung P, Kirby JR (2006) Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 188:5888–5895PubMedCrossRefGoogle Scholar
  8. Berleman J, Scott J, Chumley T, Kirby JR (2008) Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci USA 105:17127–17132PubMedCrossRefGoogle Scholar
  9. Bhaya D (2004) Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53:745–754PubMedCrossRefGoogle Scholar
  10. Bitter W, Koster M, Latijnhouwers M, de Cock H, Tommassen J (1998) Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219PubMedCrossRefGoogle Scholar
  11. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132PubMedCrossRefGoogle Scholar
  12. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  13. Bui NK, Gray J, Schwarz H, Schumann P, Blanot D, Vollmer W (2009) The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J Bacteriol 191:494–505PubMedCrossRefGoogle Scholar
  14. Caberoy NB, Giglio K, Suen G, Garza AG (2009) A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci USA 108:E431–E439Google Scholar
  15. Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhardt F (ed) Escherichia coli and Salmonella typhimurium cellular and molecular biology, vol 1. ASM, Washington, DC, pp 1458–1496Google Scholar
  16. Chiang P, Habash M, Burrows LL (2005) Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 187:829–839PubMedCrossRefGoogle Scholar
  17. Clausen M, Jakovljevic V, Søgaard-Andersen L, Maier B (2009) High-force generation is a conserved property of type IV pilus systems. J Bacteriol 191:4633–4638PubMedCrossRefGoogle Scholar
  18. Collins RF, Davidsen L, Derrick JP, Ford RC, Tonjum T (2001) Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 183:3825–3832PubMedCrossRefGoogle Scholar
  19. Collins RF, Frye SA, Kitmitto A, Ford RC, Tønjum T, Derrick JP (2004) Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Å resolution. J Biol Chem 279:39750–39756PubMedCrossRefGoogle Scholar
  20. Craig L, Volkmann N, Arvai AS, Pique ME, Yeager M, Egelman EH, Tainer JA (2006) Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23:651–662PubMedCrossRefGoogle Scholar
  21. Cuthbertson L, Mainprize I, Naismith J, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiol Mol Biol Rev 73:155–177PubMedCrossRefGoogle Scholar
  22. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662PubMedCrossRefGoogle Scholar
  23. Dahl JL, Tengra F, Dutton D, Yan J, Andacht T, Coyne L, Windell V, Garza AG (2007) Identification of major sporulation proteins of Myxococcus xanthus using a proteome approach. J Bacteriol 189:3187–3197PubMedCrossRefGoogle Scholar
  24. Darnton N, Turner L, Rojevsky S, Berg HC (2010) Dynamics of bacterial swarming. Biophys J 98:2082–2090PubMedCrossRefGoogle Scholar
  25. Diodati M, Gill R, Plamann L, Singer M (2008) Initiation and early developmental events. In: Whitworth D (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington DC, pp 43–76Google Scholar
  26. Dworkin M (1999) Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 21:590–595PubMedCrossRefGoogle Scholar
  27. Ellehauge E, Norregaard-Madsen M, Søgaard-Andersen L (1998) The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 30:807–813PubMedCrossRefGoogle Scholar
  28. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126PubMedCrossRefGoogle Scholar
  29. Evans K, Hobley L, Lambert C, Sockett RE (2008) Bdellovibrio: lone hunter cousin of the pack hunting myxobacteria. In: Whitworth D (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC, pp 351–362Google Scholar
  30. Fontes M, Kaiser D (1999) Myxococcus cells respond to elastic forces in their substrate. Proc Natl Acad Sci USA 96:8052–8057PubMedCrossRefGoogle Scholar
  31. Fremgen S, Burke N, Hartzell P (2010) Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus. BMC Microbiol 10:295PubMedCrossRefGoogle Scholar
  32. Frye SA, Assalkhou R, Collins RF, Ford RC, Petersson C, Derrick JP, Tonjum T (2006) Topology of the outer-membrane secretin PilQ from Neisseria meningitidis. Microbiology 152:3751–3764PubMedCrossRefGoogle Scholar
  33. Giglio K, Caberoy NB, Suen G, Kaiser D, Garza AG (2011) A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci USA 108:E431–E439PubMedCrossRefGoogle Scholar
  34. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103:15200–15205PubMedCrossRefGoogle Scholar
  35. Gronewold TMA, Kaiser D (2001) The act operon controls the level and time of C-signal production for M. xanthus development. Mol Microbiol 40:744–756PubMedCrossRefGoogle Scholar
  36. Gronewold TMA, Kaiser D (2002) act operon control of developmental gene expression in Myxococcus xanthus. J Bacteriol 184:1172–1179PubMedCrossRefGoogle Scholar
  37. Hagen DC, Bretscher AP, Kaiser D (1978) Synergism between morphogenetic mutants of Myxococcus xanthus. Dev Biol 64:284–296PubMedCrossRefGoogle Scholar
  38. Hansen JK, Forest KT (2006) Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J Mol Microbiol Biotechnol 11:192–207PubMedCrossRefGoogle Scholar
  39. Harshey RM (1994) Bees aren’t the only ones: swarming in Gram-negative bacteria. Mol Microbiol 13:389–394PubMedCrossRefGoogle Scholar
  40. Harshey RM, Matsuyama T (1994) Dimorphic transition in E. coli and S. typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8634PubMedCrossRefGoogle Scholar
  41. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503PubMedGoogle Scholar
  42. Hodgkin J, Kaiser D (1977) Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA 74:2938–2942PubMedCrossRefGoogle Scholar
  43. Hodgkin J, Kaiser D (1979) Genetics of gliding motility in M. xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171:167–176CrossRefGoogle Scholar
  44. Hoiczyk E (2000) Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174:11–17PubMedCrossRefGoogle Scholar
  45. Hoiczyk E, Baumeister W (1998) The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr Biol 8:1161–1168PubMedCrossRefGoogle Scholar
  46. Igoshin O, Goldbetter A, Kaiser D, Oster G (2004) A biochemical oscillator explains the developmental progression of myxobacteria. Proc Natl Acad Sci USA 101:15760–15765PubMedCrossRefGoogle Scholar
  47. Inouye M, Inouye S, Zusman D (1979) Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev Biol 68:579–591PubMedCrossRefGoogle Scholar
  48. Jelsbak L, Søgaard-Andersen L (1999) The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis. Proc Natl Acad Sci USA 96:5031–5036PubMedCrossRefGoogle Scholar
  49. Kaiser AD (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci USA 76:5952–5956PubMedCrossRefGoogle Scholar
  50. Kaiser D (2006) A microbial genetic journey. Annu Rev Microbiol 60:1–25PubMedCrossRefGoogle Scholar
  51. Kaiser D (2007) Bacterial swarming, a re-examination of cell movement patterns. Curr Biol 17:R561–R570PubMedCrossRefGoogle Scholar
  52. Kaiser D (2009) Are there lateral as well as polar engines for A-motile gliding in myxobacteria? J Bacteriol 191:5336–5341PubMedCrossRefGoogle Scholar
  53. Kaiser AD, Crosby C (1983) Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil 3:227–245CrossRefGoogle Scholar
  54. Kaiser D, Warrick H (2011) M. xanthus swarms are driven by growth and regulated by a pacemaker. J Bacteriol 193:5898–5904PubMedCrossRefGoogle Scholar
  55. Kaiser D, Warrick H (2012) Focal adhesions as cell-cell signaling channels. Mol Microbiol (In print)Google Scholar
  56. Kaiser D, Welch R (2004) Dynamics of fruiting body morphogenesis. J Bacteriol 186:919–927PubMedCrossRefGoogle Scholar
  57. Kaplan HB, Plamann L (1996) A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 139:89–95PubMedGoogle Scholar
  58. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644PubMedCrossRefGoogle Scholar
  59. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590PubMedCrossRefGoogle Scholar
  60. Kearns DB, Shimkets LJ (2001) Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol 9:126–129PubMedCrossRefGoogle Scholar
  61. Keseler IM, Kaiser D (1997) Sigma-54, a vital protein for Myxococcus xanthus. Proc Natl Acad Sci USA 94:1979–1984PubMedCrossRefGoogle Scholar
  62. Kim SK, Kaiser D (1990a) Cell alignment required in differentiation of Myxococcus xanthus. Science 249:926–928PubMedCrossRefGoogle Scholar
  63. Kim SK, Kaiser D (1990b) Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev 4:896–905PubMedCrossRefGoogle Scholar
  64. Kim SK, Kaiser D (1990c) Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc Natl Acad Sci USA 87:3635–3639PubMedCrossRefGoogle Scholar
  65. Kimsey HH, Kaiser D (1991) Targeted disruption of the Myxococcus xanthus orotidine 5'-monophosphate decarboxylase gene: effects on growth and fruiting-body development. J Bacteriol 173:6790–6797PubMedGoogle Scholar
  66. Kirby JR, Zusman DR (2003) Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci USA 100:2008–2013PubMedCrossRefGoogle Scholar
  67. Kirby JR, Berleman J, Muller S, Li D, Scott J, Wilson J (2008) Chemosensory signal transduction systems in Myxococcus xanthus. In: Whitworth D (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington DC, pp 135–147Google Scholar
  68. Kroos L, Inouye S (2008) Transcriptional regulatory mechanisms during Myxococcus xanthus development. In: Whitworth D (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington DC, pp 149–168Google Scholar
  69. Kroos L, Hartzell P, Stephens K, Kaiser D (1988) A link between cell movement and gene expression argues that motility is required for cell-cell signalling during fruiting body development. Genes Dev 2:1677–1685PubMedCrossRefGoogle Scholar
  70. Kroos L, Zhang B, Ichikawa H, Yu U-TN (1999) Control of sigma factor activity during Bacillus subtilis sporulation. Mol Microbiol 31:1285–1294PubMedCrossRefGoogle Scholar
  71. Kuspa A, Kroos L, Kaiser D (1986) Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol 117:267–276PubMedCrossRefGoogle Scholar
  72. Kuspa A, Plamann L, Kaiser D (1992a) Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174:3319–3326PubMedGoogle Scholar
  73. Kuspa A, Plamann L, Kaiser D (1992b) A-signalling and the cell density requirement for Myxococcus xanthus development. J Bacteriol 174:7360–7369PubMedGoogle Scholar
  74. Leonardy S, Freymark G, Hebener S, Ellehauge E, Søgaard-Andersen L (2007) Coupling of protein localization and cell movement by a dynamically localized response regulator in Myxococcus xanthus. EMBO J 26:4433–4444PubMedCrossRefGoogle Scholar
  75. Leonardy S, Miertzschke M, Bulyha I, Sperling E, Wittinghofer A, Søgaard-Andersen L (2010) Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J 29:2276–2289PubMedCrossRefGoogle Scholar
  76. Li Y, Sun H, Ma X, Lu A, Lux R, Zusman D, Shi W (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci USA 100:5443–5448PubMedCrossRefGoogle Scholar
  77. Licking E, Gorski L, Kaiser D (2000) A common step for changing the cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 182:3553–3558PubMedCrossRefGoogle Scholar
  78. Lobedanz S, Søgaard-Andersen L (2003) Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 17:2151–2161PubMedCrossRefGoogle Scholar
  79. Lu A, Cho K, Black WP, Duan X-Y, Lux R, Yang Z, Kaplan HB, Zusman D, Shi W (2005) Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55:206–220PubMedCrossRefGoogle Scholar
  80. Maier B, Potter L, So M, Seifert HS, Sheetz MP (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci USA 99:16012–16017PubMedCrossRefGoogle Scholar
  81. Manoil C, Kaiser D (1980a) Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation. J Bacteriol 141:297–304PubMedGoogle Scholar
  82. Manoil C, Kaiser D (1980b) Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141:305–315PubMedGoogle Scholar
  83. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314PubMedCrossRefGoogle Scholar
  84. Mauriello E, Nan B, Zusman D (2009) AglZ regulates adventurous [A-] motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72:964–977PubMedCrossRefGoogle Scholar
  85. McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351PubMedCrossRefGoogle Scholar
  86. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407:98–102PubMedCrossRefGoogle Scholar
  87. Mignot T, Merlie JP, Zusman D (2005) Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855–857PubMedCrossRefGoogle Scholar
  88. Mignot T, Shaevitz J, Hartzell P, Zusman D (2007) Evidence that focal adhesions power bacterial gliding motility. Science 315:853–856PubMedCrossRefGoogle Scholar
  89. Nudleman E, Kaiser D (2004) Pulling together with type IV pili. J Mol Microbiol Biotechnol 7:52–62PubMedCrossRefGoogle Scholar
  90. Nudleman E, Wall D, Kaiser D (2005) Cell-to-cell transfer of bacterial outer-membrane lipoproteins. Science 309:125–127PubMedCrossRefGoogle Scholar
  91. Nudleman E, Wall D, Kaiser D (2006) Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol Microbiol 60:16–29PubMedCrossRefGoogle Scholar
  92. Pelicic V (2008) Type IV pili: e pluribus unum? Mol Microbiol 68:827–837PubMedCrossRefGoogle Scholar
  93. Plaga W, Stamm I, Schairer HU (1998) Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc Natl Acad Sci USA 95:11263–11267PubMedCrossRefGoogle Scholar
  94. Reichenbach H (1966) Myxococcus spp. (Myxobacterales) Schwarmentwicklung und Bildung von Protocysten. Institut fur den Wissenschaftlichen Film, Gottingen, GermanyGoogle Scholar
  95. Reichenbach H (1984) In: Rosenberg E (ed) Myxobacteria: a most peculiar group of social prokaryotes. Springer, New York, pp 1–50, p. 34Google Scholar
  96. Reichenbach H (1993) In: Dworkin M, Kaiser D (eds) Biology of the myxobacteria: ecology and taxonomy. ASM, Washington, pp 13–62Google Scholar
  97. Reichenbach H, Heunert HH, Kuczka H (1965a) Archangium violaceum (Myxobacterales) - Schwarmentwicklung und Bildung von Protocysten. Film E777. Inst. Wissensch. Film, Gottingen, GerGoogle Scholar
  98. Reichenbach H, Heunert HH, Kuczka H (1965b) Chondromyces apiculatus (Myxobacterales)-Schwarmentwicklung und Morphogenese. Film E779. Inst. Wissensch. Film, Gottingen, GerGoogle Scholar
  99. Reichenbach H, Galle HK, Heunert HH (1975/1976) Stigmatella aurantiaca (Myxobacterales). Schwarmentwicklung und Morphogenese. Film E2421. Inst. Wissensch. Film, Gottingen, GerGoogle Scholar
  100. Rodriguez-Soto JP, Kaiser D (1997a) Identification and localization of the tgl protein, which is required for Myxococcus xanthus social motility. J Bacteriol 179:4372–4381PubMedGoogle Scholar
  101. Rodriguez-Soto JP, Kaiser D (1997b) The tgl gene: social motility and stimulation in Myxococcus xanthus. J Bacteriol 179:4361–4371PubMedGoogle Scholar
  102. Rolbetski A, Ammon M, Jakovljevic V, Konovalova A, Søgaard-Andersen L (2008) Regulated secretion of a protease activity activates intercellular signaling during fruiting body formation in M. xanthus. Dev Cell 15:627–634CrossRefGoogle Scholar
  103. Ronning CM, Nierman WC (2008) The genomes of Myxococcus xanthus and Stigmatella aurantiaca. In: Whitworth D (ed) Myxobacteria: multicellularity and differentiation. ASM, Washington, DC, pp 285–298Google Scholar
  104. Sager B, Kaiser D (1994) Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev 8:2793–2804PubMedCrossRefGoogle Scholar
  105. Satyshur K, Worzalla G, Meyer L, Heiniger E, Aukema K, Misic A, Forest KT (2007) Crystal structures of the pilus retraction motor PilT suggests large domain movements and subunit cooperation drive motility. Structure 15:363–376PubMedCrossRefGoogle Scholar
  106. Semmler ABT, Whitchurch CB, Mattick JS (1999) A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145:2863–2873PubMedGoogle Scholar
  107. Senesi S, Celandroni F, Salvetti S, Beecher D, Wong A, Ghelardi E (2002) Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology 148:1785–1794PubMedGoogle Scholar
  108. Shimkets LJ, Gill RE, Kaiser D (1983) Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc Natl Acad Sci USA 80:1406–1410PubMedCrossRefGoogle Scholar
  109. Simunovic V, Gherardini FC, Shimkets LJ (2003) Membrane localization of motility, signaling, and polyketide synthase proteins in Myxococcus xanthus. J Bacteriol 185:5066–5075PubMedCrossRefGoogle Scholar
  110. Singer M, Kaiser D (1995) Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9:1633–1644PubMedCrossRefGoogle Scholar
  111. Skerker J, Berg H (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98:6901–6904PubMedCrossRefGoogle Scholar
  112. Søgaard-Andersen L (2008) Contact-dependent signaling in Myxococcus xanthus: the function of the C-signal in fruiting body morphogenesis. In: Whitworth D (ed) Myxobacteria: multicellularity and differentiation. ASM, Washington, DC, pp 77–91Google Scholar
  113. Sozinova O, Jiang Y, Kaiser D, Alber MS (2005) Three-dimensional model of myxobacterial aggregation by contact-mediated interaction. Proc Natl Acad Sci USA 102:11308–11312PubMedCrossRefGoogle Scholar
  114. Sozinova O, Jiang Y, Kaiser D, Alber M (2006) A three-dimensional model of myxobacterial fruiting body formation. Proc Natl Acad Sci USA 103:17255–17259PubMedCrossRefGoogle Scholar
  115. Sproer C, Reichenbach H, Stackebrandt E (1999) Correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255–1262PubMedCrossRefGoogle Scholar
  116. Stephens K, Hartzell P, Kaiser D (1989) Gliding motility in Myxococcus xanthus: the mgl locus, its RNA and predicted protein products. J Bacteriol 171:819–830PubMedGoogle Scholar
  117. Strogatz SH (2003) Sync: the emerging science of spontaneous order. Hyperion, New YorkGoogle Scholar
  118. Strom MS, Nunn DN, Lory S (1993) A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci USA 90:2404–2408PubMedCrossRefGoogle Scholar
  119. Studholme DJ, Dixon R (2003) Minireview: Domain architectures of s54-dependent transcriptional activators. J Bacteriol 185:1757–1767PubMedCrossRefGoogle Scholar
  120. Turner L, Zhang R, Darnton N, Berg HC (2010) Visualization of flagella during bacterial swarming. J Bacteriol 192:3259–3267PubMedCrossRefGoogle Scholar
  121. Tzeng L-F, Singer M (2005) DNA replication during sporulation in Myxococcus xanthus fruiting bodies. Proc Natl Acad Sci USA 102:14428–14433PubMedCrossRefGoogle Scholar
  122. Tzeng L-F, Ellis TN, Singer M (2006) DNA replication during aggregation phase is essential for Myxococcus xanthus development. J Bacteriol 188:2774–2779PubMedCrossRefGoogle Scholar
  123. Vos M, Velicer G (2006) Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl Environ Microbiol 72:3615–3625PubMedCrossRefGoogle Scholar
  124. Wall D, Kaiser D (1998) Alignment enhances the cell-to-cell transfer of pilus phenotype. Proc Natl Acad Sci USA 95:3054–3058PubMedCrossRefGoogle Scholar
  125. Wall D, Wu SS, Kaiser D (1998) Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J Bacteriol 180:759–761PubMedGoogle Scholar
  126. Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness: a new role for the bacterial flagellum. EMBO J 24:2034–2042PubMedCrossRefGoogle Scholar
  127. Ward MJ, Lew H, Zusman DR (2000) Social motility in Myxococcus xanthus requires FrzS, a novel protein with an extensive coiled-coil domain. Mol Microbiol 37:1357–1371PubMedCrossRefGoogle Scholar
  128. Wei X, Pathak D, Wall D (2011) Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol 81:315–326PubMedCrossRefGoogle Scholar
  129. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68PubMedCrossRefGoogle Scholar
  130. Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 86:6973–6977PubMedCrossRefGoogle Scholar
  131. Wolgemuth C, Hoiczyk E, Kaiser D, Oster G (2002) How myxobacteria glide. Curr Biol 12:369–377PubMedCrossRefGoogle Scholar
  132. Wu Y, Kaiser D, Jiang Y, Alber M (2009) Periodic reversal of direction allows myxobacteria to swarm. Proc Natl Acad Sci USA 106:1222–1227PubMedCrossRefGoogle Scholar
  133. Wu Y, Hosu BG, Berg HC (2011) Microbubbles reveal chiral fluid flows in bacterial swarms. Proc Natl Acad Sci USA 108:4147–4151PubMedCrossRefGoogle Scholar
  134. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546PubMedCrossRefGoogle Scholar
  135. Youderian P, Burke N, White DJ, Hartzell PL (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49:555–570PubMedCrossRefGoogle Scholar
  136. Yu R, Kaiser D (2007) Gliding motility and polarized slime secretion. Mol Microbiol 63:454–467PubMedCrossRefGoogle Scholar
  137. Zhang R, Turner L, Berg HC (2010) The upper surface of an Escherichia coli swarm is stationary. Proc Natl Acad Sci USA 107:288–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiochemistryStanford University School of MedicineStanfordUSA

Personalised recommendations