The Family Thermodesulfobacteriaceae

  • Koji Mori
Reference work entry


Thermodesulfobacteriaceae is the only family belonging to the order Thermodesulfobacteriales, class Thermodesulfobacteria, and phylum Thermodesulfobacteria and consists of the 4 valid genera, Thermodesulfobacterium, Thermodesulfatator, Caldimicrobium, and Thermosulfurimonas and the invalid genus Geothermobacterium. They are Gram-negative, rod-shaped, non-sporulating, anaerobic thermophiles that grow with sulfur compounds or Fe(III) as an energy source. Phylogenetic analysis based on the 16S rRNA gene demonstrates that this family is one of the deeply branching lineages within the domain Bacteria. They inhabit thermal environments such as terrestrial hot springs, oil reservoirs, and hydrothermal fields.


Lateral Gene Transfer Spore Formation Hydrothermal Field Sulfur Sulfur Sulfite Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alain K, Postec A, Grinsard E, Lesongeur F, Prieur D, Godfroy A (2010) Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 60:33–38PubMedCrossRefGoogle Scholar
  2. Anderson I, Saunders E, Lapidus A, Nolan M, Lucas S, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Chang YJ, Brambilla EM, Rohde M, Spring S, Goker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2012) Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T). Stand Genomic Sci 6:155–164PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892PubMedCrossRefGoogle Scholar
  4. Brock TD (2000) Biology of microorganisms, 9th edn. Prentice-Hall International, LondonGoogle Scholar
  5. Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from north sea oil field waters. Appl Environ Microbiol 58:1244–1248PubMedPubMedCentralGoogle Scholar
  6. Collins MD, Weddel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18CrossRefGoogle Scholar
  7. Everroad RC, Otaki H, Matsuura K, Haruta S (2012) Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ 27:374–381PubMedPubMedCentralCrossRefGoogle Scholar
  8. Fauque G, Czechowski M, Kang-Lissolo L, DerVartanian DV, Moura JJG, Moura I, Lampreia J, Xavier AV, LeGall J (1986) Purification of adenylyl sulfate (APS) reductase and desulfofuscidin from a thermophilic sulfate reducer: Desulfovibrio thermophilus. In: Annual meeting of the Society for Industrial Microbiology, San Francisco, p 92Google Scholar
  9. Fauque G, Lino AR, Czechowski M, Kang L, DerVartanian DV, Moura JJ, LeGall J, Moura I (1990) Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands. Biochim Biophys Acta 1040:112–118PubMedCrossRefGoogle Scholar
  10. Fauque G, LeGall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, London, pp 271–337Google Scholar
  11. Fauque G, Czechowski M, Berlier YM, Lespinat PA, LeGall J, Moura JJG (1992) Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium. Biochem Biophys Res Commun 184:1256–1260PubMedCrossRefGoogle Scholar
  12. Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hamana K, Hamana H, Niitsu M, Samejima K, Itoh T (1996) Distribution of long linear and branched polyamines in thermophilic eubacteria and hyperthermophilic archaebacteria. Microbios 85:19–33Google Scholar
  14. Hamana K, Hamana H, Shinozawa T, Niitsu M, Samejima K, Itoh T (1999) Polyamines of the thermophilic eubacteria belonging to the genera Aquifex, Thermodesulfobacterium, Thermus and Meiothermus, and the thermophilic archaebacteria belonging to the genera Sulfurisphaera, Sulfophobococcus, Stetteria, Thermocladium, Pyrococcus, Thermococcus, Methanopyrus and Methanothermus. Microbios 97:117–130Google Scholar
  15. Hatchikian EC (1994) Desulfofuscidin: dissimilatory, high-spin sulfite reductase of thermophilic, sulfate-reducing bacteria. In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism. Academic, San Diego, pp 276–295CrossRefGoogle Scholar
  16. Hatchikian EC, Zeikus JG (1983) Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J Bacteriol 153:1211–1220PubMedPubMedCentralGoogle Scholar
  17. Hatchikian EC, Papavassiliou P, Bianco P, Haladjian J (1984) Characterization of cytochrome .3 from the thermophilic sulfate reducer Thermodesulfobacterium commun. J Bacteriol 159:1040–1046PubMedPubMedCentralGoogle Scholar
  18. Hatchikian EC, Ollivier B, Garcia J-L (2001) Family I. Thermodesulfobacteriaceae fam. nov. In: Boon DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 390–393Google Scholar
  19. Hosoya R, Hamana K, Niitsu M, Itoh T (2004) Polyamine analysis for chemotaxonomy of thermophilic eubacteria: polyamine distribution profiles within the orders Aquificales, Thermotogales, Thermodesulfobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J Gen Appl Microbiol 50:271–287PubMedCrossRefGoogle Scholar
  20. Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach AL, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765–772PubMedCrossRefGoogle Scholar
  21. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kashefi K, Shelobolina ES, Elliott WC, Lovley DR (2008) Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl Environ Microbiol 74:251–258PubMedPubMedCentralCrossRefGoogle Scholar
  23. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kobayashi H, Endo K, Sakata S, Mayumi D, Kawaguchi H, Ikarashi M, Miyagawa Y, Maeda H, Sato K (2012) Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. J Biosci Bioeng 113:204–210PubMedCrossRefGoogle Scholar
  25. L’Haridon S, Reysenbacht AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224CrossRefGoogle Scholar
  26. Langworthy TA, Holzer G, Zeikus JG, Tornabene TG (1983) Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst Appl Microbiol 4:1–17PubMedCrossRefGoogle Scholar
  27. Lau MC, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13:139–149PubMedCrossRefGoogle Scholar
  28. LeGall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 587–639Google Scholar
  29. Meyer-Dombard DR, Swingley W, Raymond J, Havig J, Shock EL, Summons RE (2011) Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park. Environ Microbiol 13:2216–2231PubMedCrossRefGoogle Scholar
  30. Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Tourova TP, Kolganova TV, Spring S, Bonch-Osmolovskaya EA (2009) Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 59:1040–1044PubMedCrossRefGoogle Scholar
  31. Mori K, Kim H, Kakegawa T, Hanada S (2003) A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290PubMedCrossRefGoogle Scholar
  32. Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233PubMedCrossRefGoogle Scholar
  33. Nakagawa T, Hanada S, Maruyama A, Marumo K, Urabe T, Fukui M (2002) Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan). FEMS Microbiol Ecol 41:199–209PubMedCrossRefGoogle Scholar
  34. Nakagawa T, Nakagawa S, Inagaki F, Takai K, Horikoshi K (2004) Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol Lett 232:145–152PubMedCrossRefGoogle Scholar
  35. Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155PubMedCrossRefGoogle Scholar
  36. Nunoura T, Takai K (2009) Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol Ecol 67:351–370PubMedCrossRefGoogle Scholar
  37. Otaki H, Everroad RC, Matsuura K, Haruta S (2012) Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium. Microbes Environ 27:293–299PubMedPubMedCentralCrossRefGoogle Scholar
  38. Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF, DeLong EF, Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11:176–187PubMedCrossRefGoogle Scholar
  39. Postec A, Lesongeur F, Pignet P, Ollivier B, Querellou J, Godfroy A (2007) Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11:747–757PubMedCrossRefGoogle Scholar
  40. Rozanova EP, Khudyakova AI (1974) Participation of microorganisms in sulphur tunover in Pomaretzkoye Lake. Mikrobiologiya 43:908–912Google Scholar
  41. Rozanova EP, Pivovarova TA (1988) Reclassification of Desulfovibrio thermophilus (Rozanova and Khudykova, 1974). Mikrobiologiya 57:102–106Google Scholar
  42. Shimizu F, Ogata M, Yagi T, Wakabayashi S, Matsubara H (1989) Amino acid sequence and function of rubredoxin from Desulfovibrio vulgaris Miyazaki. Biochimie 71:1171–1177PubMedCrossRefGoogle Scholar
  43. Skerman VDB, McGowan C, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  44. Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841PubMedPubMedCentralCrossRefGoogle Scholar
  45. Slobodkin AI, Reysenbach AL, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2565–2571PubMedCrossRefGoogle Scholar
  46. Sonne-Hansen J, Ahring BK (1999) Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22:559–564PubMedCrossRefGoogle Scholar
  47. Spear JR, Walker JJ, McCollom TM, Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA 102:2555–2560PubMedPubMedCentralCrossRefGoogle Scholar
  48. Tao T-S, Yue Y-Y, Fang C-X (1996) Irregularities in the validation of the genus Thermodesulfobacterium and its species: request for an opinion. Int J Syst Bacteriol 46:622CrossRefGoogle Scholar
  49. Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108PubMedPubMedCentralGoogle Scholar
  50. Trüper HG (2003) Valid publication of the genus name Thermodesulfobacterium and the species names Thermodesulfobacterium commune (Zeikus, et al. 1983) and Thermodesulfobacterium thermophilum (ex Desulfovibrio thermophilus Rozanova and Khudyakova 1974). Opinion 71. Int J Syst Evol Microbiol 53:927CrossRefGoogle Scholar
  51. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  52. Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulphido-genesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169Google Scholar
  53. Zverlov V, Klein M, Lucker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187:2203–2208PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Biological Resource CenterNational Institute of Technology and Evaluation (NBRC)KisarazuJapan

Personalised recommendations