Advertisement

The Family Syntrophomonadaceae

  • Bernhard Schink
  • Raúl Muñoz
Reference work entry

Abstract

The family Syntrophomonadaceae comprises the genera Syntrophomonas, Pelospora, Syntrophothermus, and Thermosyntropha. All these bacteria are strictly anaerobic and depend on reducing conditions for growth. They are Gram-positive with low DNA content, but in most cases the murein layer is thin and an outer membrane appears, resembling the cell wall architecture of Gram-negative bacteria. Also in Gram-staining, these bacteria mostly behave Gram-negative. Except for Pelospora, all members of this family degrade fatty acids of four carbon atoms or more by beta oxidation, in close association with hydrogen- or formate-utilizing partner organisms, and depend on this association for thermodynamic reasons. Most representatives of this family can be grown in pure culture with crotonate which is dismutated to acetate and butyrate. Pelospora sp. grows by decarboxylation of glutarate or succinate.

Keywords

Rumen Fluid Syntrophic Association Syntrophic Bacterium Syntrophic Interaction Methanospirillum Hungatei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This manuscript is largely based on its predecessor that was written by Martin Sobieraj and David R. Boone and published in the last edition of the Prokaryotes. The author wants to dedicate this manuscript to the late David Boone who made substantial contributions to microbial taxonomy in general and to our understanding of syntrophic fatty acid oxidation in particular. Unfortunately, David passed away in 2005 far too early, at 53 years of age.

References

  1. Beaty PS, McInerney MJ (1987) Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147:389–393CrossRefGoogle Scholar
  2. Beaty PS, McInerney MJ (1990) Nutritional features of Syntrophomonas wolfei Appl. Environ Microbiol 50:3223–3224Google Scholar
  3. Boone DR (1995) Short-and long-term maintenance of methanogen stock cultures. In: Sowers KR, Schreier HJ (eds) Archaea: Methanogens: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 79–83Google Scholar
  4. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632PubMedPubMedCentralGoogle Scholar
  5. Buchanan RE, Gibbons NE (eds) (1974) Bergey’s manual of determinative bacteriology. Williams and Wilkins, BaltimoreGoogle Scholar
  6. Djao ODN et al (2010) Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1(T)). Stand Genomic Sci 3:267–275CrossRefGoogle Scholar
  7. Gibbons NE, Murray RGE (1978) Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 28:1–6CrossRefGoogle Scholar
  8. Hatamoto M, Imachi H, Fukayo S, Ohashi A, Harada H (2007) Syntrophomonas palmitatica sp nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol 57:2137–2142PubMedCrossRefGoogle Scholar
  9. Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms. Academic Press, London, pp 69–81Google Scholar
  10. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris R, Ribbons DW (eds) Methods in microbiology. Academic Press, New York, pp 117–132Google Scholar
  11. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556PubMedCrossRefGoogle Scholar
  12. Lorowitz WH, Zhao H, Bryant MP (1989) Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39:122–126CrossRefGoogle Scholar
  13. Matthies C, Springer N, Ludwig W, Schink B (2000) Pelospora glutarica gen. nov., sp. nov., a glutarate-fermenting, strictly anaerobic, spore-forming bacterium. Int J Syst Evol Microbiol 50:645–648PubMedCrossRefGoogle Scholar
  14. McInerney MJ (1986) Transient and persistent associations among prokaryotes. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature. Plenum Press, New York, pp 293–338Google Scholar
  15. McInerney MJ, Wofford NQ (1992) Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch Microbiol 158:344–349CrossRefGoogle Scholar
  16. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135CrossRefGoogle Scholar
  17. McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039PubMedPubMedCentralGoogle Scholar
  18. Müller N, Schleheck D, Schink B (2009) Involvement of NADH: acceptor oxidoreductase and butyryl-CoA dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J Bacteriol 191:6167–6177PubMedCrossRefPubMedCentralGoogle Scholar
  19. Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499PubMedCrossRefGoogle Scholar
  20. Roy F, Samain E, Dubourguier HC, Albagnac G (1986) Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147CrossRefGoogle Scholar
  21. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  22. Schmidt A, Müller N, Schink B, Schleheck D (2013) A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. Plos One http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0056905
  23. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779PubMedCrossRefGoogle Scholar
  24. Sieber JR et al (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301PubMedGoogle Scholar
  25. Sousa DZ, Smidt H, Alves MM, Stams AJM (2007) Syntrophomonas zehnderi sp nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57:609–615PubMedCrossRefGoogle Scholar
  26. Sowers KR, Noll KM (1995) Techniques for anaerobic growth. In: Robb FT, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 15–47Google Scholar
  27. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic anlyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690PubMedCrossRefGoogle Scholar
  28. Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390CrossRefGoogle Scholar
  29. Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short-and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137PubMedCrossRefGoogle Scholar
  30. Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. Symp Soc Gen Microbiol 36:123–374Google Scholar
  31. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  32. Tschech A, Schink B (1985a) Fermentative degradation of resorcinol and resorcylic acids. Arch Microbiol 143:52–59CrossRefGoogle Scholar
  33. Tschech A, Schink B (1985b) Fermentative metabolism of monohydroxybenzoates by defined syntrophic cocultures. Arch Microbiol 145:396–402CrossRefGoogle Scholar
  34. Wallrabenstein C, Schink B (1994) Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch Microbiol 162:136–142CrossRefGoogle Scholar
  35. Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185PubMedPubMedCentralGoogle Scholar
  36. Wu CG, Liu XL, Dong XZ (2006a) Syntrophomonas erecta subsp sporosyntropha subsp nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst Appl Microbiol 29:457–462PubMedCrossRefGoogle Scholar
  37. Wu CG, Liu XL, Dong XZ (2006b) Syntrophomonas cellicola sp nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335PubMedCrossRefGoogle Scholar
  38. Wu CG, Dong XZ, Liu XL (2007) Syntrophomonas wolfei subsp methylbutyratica subsp nov., and assignment of Syntrophomonas wolfei subsp saponavida to Syntrophomonas saponavida sp nov comb. nov. Syst Appl Microbiol 30:376–380PubMedCrossRefGoogle Scholar
  39. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33: 291–299Google Scholar
  40. Zhang CY, Liu XL, Dong XZ (2004) Syntrophomonas curvata sp nov., an anaerobe that degrades fatty acids in coculture with methanogens. Int J Syst Evol Microbiol 54:969–973PubMedCrossRefGoogle Scholar
  41. Zhang CY, Liu XL, Dong XX (2005) Syntrophomonas erecta sp nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803PubMedCrossRefGoogle Scholar
  42. Zhang F, Liu XL, Dong XZ (2012) Thermosyntropha tengcongensis sp nov., a thermophilic bacterium that degrades long-chain fatty acids syntrophically. Int J Syst Evol Microbiol 62:759–763PubMedCrossRefGoogle Scholar
  43. Zhao H, Yeng D, Woese CR, Bryant MP (1990) Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov. comb., based on 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44PubMedCrossRefGoogle Scholar
  44. Zhao H, Yang D, Woese CR, Bryant MP (1993) Assignment of fatty acid-b-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses. Int J Syst Bacteriol 43:278–286PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Marine Microbiology Group, Department of Ecology and Marine ResourcesInstitut Mediterráni d’Estudis Avancats (CSIC-UIB)Esporles, Illes BalearsSpain

Personalised recommendations