Advertisement

The Family Heliobacteriaceae

  • W. Matthew Sattley
  • Michael T. Madigan
Reference work entry

Abstract

Heliobacteria are anoxygenic phototrophic bacteria of the phylum Firmicutes and are distinct from all other anoxygenic phototrophs in many ways. These include their phylogeny, synthesis of the unique photopigment bacteriochlorophyll ., production of heat-resistant endospores, and their primarily soil habitat. Five genera of heliobacteria have been described, including a total of 11 species. Heliobacteria are obligate anaerobes, and most species are capable of both phototrophic and chemotrophic growth. Two distinct phylogenetic clades of heliobacteria exist, including a group that inhabits neutral pH soils and a group that inhabits alkaline soils and soda lake ecosystems. As a group, heliobacteria are distant relatives of endospore-forming bacteria of the Bacillaceae and Clostridiaceae. The genome of the thermophile Heliobacterium modesticaldum lacks genes for autotrophy but contains genes encoding key endospore-specific proteins and nitrogenase; the heliobacterial photosynthesis gene cluster encodes the most streamlined photosystem of any known anoxygenic phototroph. Heliobacteria are widespread in paddy soils where their strong nitrogen-fixing capacities may benefit rice plants. The photoheterotrophic lifestyle of the heliobacteria may also benefit from such associations by receiving organic carbon from plant exudates.

Keywords

Paddy Soil Soda Lake Purple Bacterium Green Sulfur Bacterium Anoxygenic Phototrophic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This chapter was supported in part by grant EF0950550 from the US National Science Foundation to MTM.

References

  1. Asao M, Madigan MT (2009) Family IV Heliobacteriaceae Madigan 2001, 625. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, (the Firmicutes), 2nd edn, vol 3. Springer, New York, pp 923–931Google Scholar
  2. Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the heliobacteria. Photosynth Res 104:103–111PubMedCrossRefGoogle Scholar
  3. Asao M, Jung DO, Achenbach LA, Madigan MT (2006) Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natrun, Egypt. Extremophiles 10:403–410PubMedCrossRefGoogle Scholar
  4. Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and “Candidatus Heliomonas lunata”. Extremophiles 16:585–595PubMedCrossRefGoogle Scholar
  5. Beer-Romero P (1986) Comparative studies on Heliobacterium chlorum, Heliospirillum gestii and Heliobacillus mobilis. MA Thesis, Department of Biology, Indiana University, BloomingtonGoogle Scholar
  6. Beer-Romero P, Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll .. FEMS Microbiol Lett 41:109–114CrossRefGoogle Scholar
  7. Beer-Romero P, Favinger JL, Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49:451–454CrossRefGoogle Scholar
  8. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, UKCrossRefGoogle Scholar
  9. Brockmann H, Lipinski A (1983) Bacteriochlorophyll .. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19CrossRefGoogle Scholar
  10. Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA, Madigan MT (1999) Heliorestis daurensis gen. nov. sp. nov., an alkaliphilic rod to coiled-shaped phototrophic heliobacterium from a Siberian soda lake. Arch Microbiol 172:167–174PubMedCrossRefGoogle Scholar
  11. Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000a) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174:283–291PubMedCrossRefGoogle Scholar
  12. Bryantseva IA, Gorlenko VM, Tourova TP, Kuznetsov BB, Lysenko AM, Bykova SA, Gal’chenko VF, Mityushina LL, Osipov GA (2000b) Heliobacterium sulfidophilum sp. nov. and Heliobacterium undosum sp. nov.: sulfide-oxidizing heliobacteria from thermal sulfidic springs. Microbiology (En transl from Mikrobiologiya) 69:325–334Google Scholar
  13. Buresh RJ, Casselman ME, Patrick WH Jr (1980) Nitrogen fixation in flooded soil systems, a review. Adv Agron 33:149–192CrossRefGoogle Scholar
  14. Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41:17–21PubMedCrossRefGoogle Scholar
  15. Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16CrossRefGoogle Scholar
  16. Gest H, Favinger JL, Madigan MT (1985) Exploitation of N2 fixation capacity for enrichment of anoxygenic photosynthetic bacteria in ecological studies. FEMS Microbiol Ecol 31:317–322CrossRefGoogle Scholar
  17. Habte M, Alexander M (1980) Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl Environ Microbiol 39:342–347PubMedPubMedCentralGoogle Scholar
  18. Heinnickel M, Golbeck JH (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53PubMedCrossRefGoogle Scholar
  19. Kimble LK, Madigan MT (1992a) Nitrogen fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158:155–161CrossRefGoogle Scholar
  20. Kimble LK, Madigan MT (1992b) Evidence for an alternative nitrogenase system in Heliobacterium gestii. FEMS Microbiol Lett 100:255–260CrossRefGoogle Scholar
  21. Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–55PubMedCrossRefGoogle Scholar
  22. Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267CrossRefGoogle Scholar
  23. Kimble-Long LK, Madigan MT (2001) Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol Lett 199:191–195PubMedCrossRefGoogle Scholar
  24. Kimble-Long LK, Madigan MT (2002) Irradiance effects on growth and bacteriochlorophyll content of phototrophic heliobacteria, purple and green photosynthetic bacteria. Photosynthetica 40:629–632CrossRefGoogle Scholar
  25. Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991) Enrichment of bacteriochlorophyll .′ in membranes of Heliobacterium chlorum by ether extraction: unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131PubMedCrossRefGoogle Scholar
  26. Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AZB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111Google Scholar
  27. Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1981–1992Google Scholar
  28. Madigan MT (2006). The family Heliobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes, vol 4. Springer, New York, pp 951–964CrossRefGoogle Scholar
  29. Madigan MT, Ormerod JG (1995) Taxonomy, physiology, and ecology of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 17–30Google Scholar
  30. Madigan MT, Euzéby JP, Asao M (2010) Proposal of Heliobacteriaceae fam. nov. Int J Syst Evol Microbiol 60:1709–1710PubMedCrossRefGoogle Scholar
  31. Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin .: properties and some speculations on a possible primary role for bacteriochlorophylls . and . in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84:2570–2574PubMedPubMedCentralCrossRefGoogle Scholar
  32. Miller KR, Jacob JS, Smith U, Kolaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114PubMedCrossRefGoogle Scholar
  33. Oh-Oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186PubMedCrossRefGoogle Scholar
  34. Oh-Oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome . to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147PubMedCrossRefGoogle Scholar
  35. Ormerod JG, Kimble LK, Nesbakken T, Torgersen YA, Woese CR, Madigan MT (1996) Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: endopore-forming heliobacteria from rice field soils. Arch Microbiol 165:226–234PubMedCrossRefGoogle Scholar
  36. Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, New York, pp 97–116Google Scholar
  37. Pickett MW, Williamson MP, Kelly DJ (1994) An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41:75–88PubMedCrossRefGoogle Scholar
  38. Sarrou I, Khan Z, Cowgill J, Lin S, Brune D, Romberger S, Golbeck JH, Redding KE (2012) Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. Photosynth Res 111:291–302PubMedCrossRefGoogle Scholar
  39. Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104:113–122PubMedCrossRefGoogle Scholar
  40. Sattley WM, Swingley WD (2013) Properties and evolutionary implications of the heliobacterial genome. In: Beatty JT (ed) Genome evolution of photosynthetic bacteria, vol 66, Advances in botanical research. Academic Press, Elsevier, San Diego, pp 67–97CrossRefGoogle Scholar
  41. Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Chen M, Blankenship RE, Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190:4687–4696PubMedPubMedCentralCrossRefGoogle Scholar
  42. Sirevåg R, Ormerod JG (1970) Carbon dioxide—fixation in photosynthetic green sulfur bacteria. Science 169:186–188PubMedCrossRefGoogle Scholar
  43. Stevenson AK (1993) Isolation and characterization of heliobacteria from soil habitats worldwide. MA Thesis, Department of Microbiology, Southern Illinois University, CarbondaleGoogle Scholar
  44. Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new heliobacteria and their habitats. Photosynth Res 53:1–12CrossRefGoogle Scholar
  45. Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-Oka H, Madigan MT (1997) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281PubMedCrossRefGoogle Scholar
  46. Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100PubMedGoogle Scholar
  47. Tang KH, Yue H, Blankenship RE (2010) Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 10:150PubMedPubMedCentralCrossRefGoogle Scholar
  48. Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904PubMedCrossRefGoogle Scholar
  49. van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll . as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of BiologyIndiana Wesleyan UniversityMarionUSA
  2. 2.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations