The Family Thermoactinomycetaceae

  • Leonor Carrillo
  • Marcelo Rafael Benítez-Ahrendts
Reference work entry

Abstract

The family Thermoactinomycetaceae is a member of the order Bacillales, Gram-positive bacteria that form endospores and mycelia, are non-acid-fast, and do not contain mycolic acids in their cell wall. At the time of writing, it encompasses 13 genera and only 20 species.

The genera are Thermoactinomyces, Laceyella, Seinonella, Thermoflavimicrobium, Planifilum, Mechercharimyces, Shimazuella, Desmospora, Kroppenstedtia, Marininema, Melghirimyces, Lihuaxuella, and Polycladomyces.

Strains of this family have been isolated from various environmental samples, such as soil, marine sediments, sugar cane, compost, sputa, and other sources.

Keywords

Aerial Mycelium Substrate Mycelium Soluble Pigment Major Cellular Fatty Acid Predominant Menaquinone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Addou AN, Schumann P, Spröer C, Bouanane-Darenfed A, Amarouche-Yala S, Hacene H, Cayol JL, Fardeau ML (2013) Melghirimyces thermohalophilus sp. nov., a novel thermoactinomycete isolated from an Algerian salt lake. Int J Syst Evol Microbiol 63:1717–1722PubMedCrossRefGoogle Scholar
  2. Addou AN, Schumann P, Spröer C, Hacene H, Cayol JL, Fardeau ML (2012) Melghirimyces algeriensis gen. nov., sp. nov., a member of the family Thermoactinomycetaceae, isolated from a salt lake. Int J Syst Evol Microbiol 62:1491–1498PubMedCrossRefGoogle Scholar
  3. Al-Khudary R, Hashwa F, Mroueh M (2004) A novel olive oil degrading Thermoactinomyces species with a high extremely thermostable lipase activity. Eng Life Sci 4:78–82CrossRefGoogle Scholar
  4. Akparov VK, Grishin AM, Yusupova MP, Ivanova NM, Chestukhina GG (2007) Structural principles of the wide substrate specificity of Thermoactinomyces vulgaris carboxypeptidase T. Reconstruction of the carboxypeptidase B primary specificity pocket. Biochemistry (Mosc) 72:416–423CrossRefGoogle Scholar
  5. Amner W, McCarthy AJ, Edwards C (1988) Quantitative assessment of factors affecting the recovery of indigenous and released thermophilic bacteria from compost. Appl Environ Microbiol 54:3107–3112PubMedPubMedCentralGoogle Scholar
  6. Barker AP, Simmon KE, Cohen S, Slechta ES, Fisher MA, Schlaberg R (2012) Isolation and identification of Kroppenstedtia eburnea from multiple patient samples. J Clin Microbiol. doi:10.1128/JCM.01186-12PubMedPubMedCentralGoogle Scholar
  7. Boiron P, Delga JM, Puel B, Drouhet E (1985) Étude sérologique de la bagassose par ELISA. Comparaison avec l’immuno-electro-diffusion. Bull Soc Fr Mycol Méd 14:309–314Google Scholar
  8. Carrillo L, Romano F, Alderete EC (1987) Determinacion de la inmunidad a Thermoactinomyces thalpophilus en Jujuy, Argentina. Acta Bioq Clin Lat Am 21:321–327Google Scholar
  9. Carrillo L, Maldonado MJ, Benitez Ahrendts MR (2009) Alkalithermophilic actinomycetes of subtropical area of Jujuy, Argentina. Rev Arg Microbiol 41:112–116Google Scholar
  10. Chang C-C, Ng C-C, Wang C-Y, Shyu T-T (2009) Activity of cellulase from Thermoactinomycetes and Bacillus spp. isolated from Brassica waste compost. Sci Agric (Piracicaba, Braz) 66:304–308Google Scholar
  11. Chen JJ, Lin LB, Zhang LL, Zhang J, Tang SK, Wei YL, Li WJ (2012) Laceyella sediminis sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 62:38–42PubMedCrossRefGoogle Scholar
  12. Cheng G, Zhao P, Tang X-F, Tang B (2009) Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. DCF. Microbiology 155:3661–3672PubMedCrossRefGoogle Scholar
  13. Collins MD, Mackillop GC, Cross T (1982) Menaquinone composition of members of the genus Thermoactinomyces. FEMS Microbiol Lett 13:151–153CrossRefGoogle Scholar
  14. Cross T, Walker PD, Gould GW (1968) Thermophilic actinomycetes producing resistant endospores. Nature (London) 220:352–354CrossRefGoogle Scholar
  15. Cunnington D, Teichtahl H, Hunt JM, Dow C, Valentine R (2000) Necrotizing pulmonary granulomata in a marijuana smoker. Chest 117:1511–1515PubMedCrossRefGoogle Scholar
  16. Dolashki A, Voelter W, Gushterova A, Van Beeumen J, Devreese B, Tchorbanov B (2012) Isolation and characterization of novel tyrosinase from Laceyella sacchari. Protein Pept Lett 19:538–543PubMedCrossRefGoogle Scholar
  17. Elwan SH, Mostafa SA, Khodair AA, Ali O (1978) Lipase productivity of a lipolytic strain of Thermoactinomyces vulgaris. Zentralbl Bakteriol Naturwiss 133:706–712PubMedGoogle Scholar
  18. Edwards JM (1972) The double dialysis method of producing farmer’s lung antigens. J Lab Clin Med 79:683–688PubMedGoogle Scholar
  19. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hagerdal BGR, Ferchak JD, Pye EK (1978) Cellulolytic enzyme system of Thermoactinomyces sp. grown on microcrystalline cellulose. Appl Environ Microbiol 36:606–612PubMedPubMedCentralGoogle Scholar
  21. Han SI, Lee JC, Lee HJ, Whang KS (2013) Planifilum composti sp. nov., a thermophile isolated from compost. Int J Syst Evol Microbiol 63:4557–4561PubMedCrossRefGoogle Scholar
  22. Hanson RL, Goldberg SL, Brzozowski DB, Tully TP, Cazzulino D, Parker WL, Lyngberg OK, Vu TC, Wong MK, Patel RN (2007) Preparation of an amino acid intermediate for the dipeptidyl peptidase iv inhibitor, saxagliptin, using a modified phenylalanine dehydrogenase. Advan Syn Catal 349:1369–1378CrossRefGoogle Scholar
  23. Hatayama K, Shoun H, Ueda Y, Nakamura A (2005) Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. Int J Syst Evol Microbiol 55:2101–2104PubMedCrossRefGoogle Scholar
  24. Hayashida S, Nanri N, Teramoto Y, Nishimoto T, Ohta K, Miyaguchi M (1988) Identification and characteristics of actinomycetes useful for semicontinuous treatment of domestic animal feces. Appl Environ Microbiol 54:2058–2063PubMedPubMedCentralGoogle Scholar
  25. Hedlund BP, Cole JK, Williams AJ, Hou W, Zhou E, Li W, Dong H (2012) A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geoscience Frontiers 3:273–288CrossRefGoogle Scholar
  26. Huuskonen MS, Husman K, Jarvisalo J, Korhonen O, Kotimaa M, Kuusela T, Nordman H, Zitting A, Mantyjarvi R (1984) Extrinsic allergic alveolitis in the tobacco industry. Br J Ind Med 41:77–83PubMedPubMedCentralGoogle Scholar
  27. Ichikawa K, Tonozuka T, Mizuno M, Tanabe Y, Kamitori S, Nishikawaa A, Sakano Y (2005) Crystallization and preliminary X-ray analysis of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylase. Acta Crystallographica F61:302–304Google Scholar
  28. Kalakoutskii LV, Agre N (1973) Endospores of Actinomycetes: dormancy and germination. In: Sykes G, Skinner FA (eds) Actinomycetales. Characteristics and practical importance. Academic Press, London, pp 179–195Google Scholar
  29. Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289–292PubMedCrossRefGoogle Scholar
  30. Kitpreechavanich V (2011) Phylogenetic of PLA-degrading thermophilic bacteria and characterization of PLA- degrading enzyme. PS093. BISMiS 2011, 19–23 May 2011, Beijing, ChinaGoogle Scholar
  31. Kleine R (1982) Properties of thermitase, a thermostable serine protease from Thermoactinomyces vulgaris. Acta Biol Med Ger 41:89–102PubMedGoogle Scholar
  32. Kretschmer S (1980) Transinfection in Thermoactinomyces vulgaris. Z Allg Mickrobiol 20:73–75CrossRefGoogle Scholar
  33. Kurtboke DI, Sivasithamparam K (1993) Taxonomic implications of the reactions of representative Bacillus strains to Thermoactinomyces-phage. Actinomycetes 4:1–7Google Scholar
  34. Kurup VP, Barboriak JJ, Fink JN, Lechevalier MP (1975) Thermoactinomyces candidus a new species of thermophilic actinomycetes. Int J Syst Bacteriol 25:150–154CrossRefGoogle Scholar
  35. Kurup VP, Barboriak JJ, Fink JN, Scribner G (1976) Immunologic cross-reactions among thermophilic actinomycetes associated with hypersensitivity pneumonitis. J Allergy Clin Immunol 57:417–421PubMedCrossRefGoogle Scholar
  36. Kurup VP, Hollick GE, Pagan EF (1980) Thermoactinomyces intermedius, a new species of amylase negative thermophilic actinomycetes. Sci Ciencia 7:104–108Google Scholar
  37. Kurup VP, Resnick A, Kagen SL, Cohen SH, Fink JN (1983) Allergenic fungi and actinomycetes in smoking materials and their health implications. Mycopathologia 82:61–64PubMedCrossRefGoogle Scholar
  38. Lacey J (1971) Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol 66:327–338PubMedCrossRefGoogle Scholar
  39. Lacey J (1974) Moulding of sugar-cane bagasse and its prevention. Ann Appl Biol 76:61–76CrossRefGoogle Scholar
  40. Lacey J (1997) Actinomycetes in composts. Ann Agric Environ Med 4:113–121Google Scholar
  41. Lacey J, Cross T (1989) Genus Thermoactinomyces Tsiklinsky 1899. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2574–2585Google Scholar
  42. Li J, Qin S, You ZQ, Long LJ, Tian XP, Wang FZ, Zhang S (2013) Melghirimyces profundicolus sp. nov., isolated from a deep sea sediment. Int J Syst Evol Microbiol 63:4552–4556PubMedCrossRefGoogle Scholar
  43. Li J, Zhang G-T, Yang J, Tian X-P, Wang F-Z, Zhang CS, Zhang S, Li W-J (2012) Marininema mesophilum gen. nov., sp. nov., a thermoactinomycete isolated from deep sea sediment, and emended description of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 62:1383–1388PubMedCrossRefGoogle Scholar
  44. Matsuo J, Katsuta A, Matsuda S, Shizuri Y, Yokota A, Kasai H (2006) Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov. Int J Syst Evol Microbiol 56:2837–2842PubMedCrossRefGoogle Scholar
  45. Matsuo Y, Kanoh K, Yamori T, Kasai H, Katsuta A, Adachi K, Shin-Ya K, Shizuri Y (2007) Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. I. Fermentation, isolation and biological activities. J Antibiotics 60:251–255CrossRefGoogle Scholar
  46. McCarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25Google Scholar
  47. McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417PubMedPubMedCentralGoogle Scholar
  48. Neef A, Schäfer R, Beimfohr C, Kämpfer P (2003) Fluorescence based rRNA sensor systems for detection of whole cells of Saccharomonospora spp. and Thermoactinomyces spp. Biosens Bioelectron 18:565–569PubMedCrossRefGoogle Scholar
  49. Nilsson M, Renberg I (1990) Viable endospores of Thermoactinomyces vulgaris in lake sediments as indicators of agricultural history. Appl Environ Microbiol 56:2025–2028PubMedPubMedCentralGoogle Scholar
  50. Ohshima T, Takada H, Yoshimura T, EsakiI N, Soda K (1991) Distribution, purification, and characterization of thermostable phenylalanine dehydrogenase from thermophilic Actinomycetes. J Bacteriol 173:3943–3948PubMedPubMedCentralGoogle Scholar
  51. Ohshima T, Nishida N, Bakthavatsalam S, Kataoka K, Takada H, Yoshimura T, Esaki N, Soda K (1994) The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Eur J Biochem 222:305–312PubMedCrossRefGoogle Scholar
  52. Panosyan HH (2010) Phylogenetic diversity based on 16S rRNA gene sequence analysis of aerobic thermophilic endospore-forming bacteria isolated from geothermal springs in Armenia. Biolog J Armenia 4:73–90Google Scholar
  53. Park Y-H, Kim E, Yim D-G, Kho Y-H, Mheen T-I, Goodfellow M (1993) Supragenic classification of Thermoactinomyces vulgaris by nucleotide sequencing of 5S ribosomal RNA. Zentbl Bakteriol 278:469–478CrossRefGoogle Scholar
  54. Park DJ, Dastager SG, Lee JC, Yeo SH, Yoon JH, Kim CJ (2007) Shimazuella kribbensis gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 57:2660–2664PubMedCrossRefGoogle Scholar
  55. Pauwels R, Devos M, Callens L, van der Straeten M (1978) Respiratory hazards from proteolytic enzymes. Lancet 1:669PubMedCrossRefGoogle Scholar
  56. Rosselló-Mora R, Yarza P, Muñoz R (2012) The PK4 tree editing team. pk4@imedea.uib-csic.esGoogle Scholar
  57. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  58. Singh V, Chandra Pandey V, Pathak DC, Agrawal S (2012) Purification and characterization of Laceyella sacchari strain B42 xylanase and its potential for pulp biobleaching. Afr J Microbiol Res 6:1397–1410Google Scholar
  59. Smith K, Sundaram TK, Kernick M (1984) Malate dehydrogenases from Actinomycetes: structural comparison of Thermoactinomyces enzyme with other Actinomycete and Bacillus Enzymes. J Bacteriol 157:684–687PubMedPubMedCentralGoogle Scholar
  60. Stackebrandt E, Woese CR (1981) Towards a phylogeny of the actinomycetes and related organisms. Curr Microbiol 5:197–202CrossRefGoogle Scholar
  61. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  62. Swan JRM, Blainey D, Crook B (2007) The HSE Grain Dust Study workers’ exposure to grain dust contaminants, immunological and clinical response. RR540. Health and Safety Laboratory. Buxton, DerbyshireGoogle Scholar
  63. Teplyakov AV, Kuranova IP, Harutyunyan EH, Vainshtein BK, Frommel C, Hohne WE, Wilson KS (1990) Crystal structure of thermitase at 1.4 Å resolution. J Mol Biol 214:261–279PubMedCrossRefGoogle Scholar
  64. Tonozuka T, Yokota T, Ichikawa K, Mizuno M, Kondo S, Nishikawa A, Kamitori S, Sakano Y (2002) Crystal structures and substrate specificities of two α-amylases hydrolyzing cyclodextrins and pullulan from Thermoactinomyces vulgaris R-47. Biologia Bratislava 57(Suppl 11):71–76Google Scholar
  65. Treuhaft MW (1977) Isolation of bacteriophage from Thermoactinomyces. J Clin Microbiol 6:420–424PubMedPubMedCentralGoogle Scholar
  66. Tsilinsky P (1899) Sur les mucedinéés thermophiles. Ann Inst Pasteur 13:500–505Google Scholar
  67. Tsubouchi T, Shimane Y, Mori K, Usui K, Hiraki T, Tame A, Uematsu K, Maruyama T, Hatada Y (2013) Polycladomyces abyssicola gen. nov., sp. nov., a thermophilic filamentous bacterium isolated from hemipelagic sediment in Japan. Int J Syst Evol Microbiol 63:1972–1981Google Scholar
  68. Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183CrossRefGoogle Scholar
  69. Turner P, Nilsson C, Svensson D, Holst O, Gorton L, Nordberg Karlsson E (2005) Monomeric and dimeric cyclomaltodextrinases reveal different modes of substrate degradation. Biologia, Bratislava, 60. Suppl 16:79–87Google Scholar
  70. Uzel A, Hameş Kocabaş EE, Bedir E (2011) Prevalence of Thermoactinomyces thalpophilus and T. sacchari strains with biotechnological potential at hot springs and soils from West Anatolia in Turkey. Turk J Biol 35:195–202Google Scholar
  71. von Jan M, Riegger N, Pötter G, Schumann P, Verbarg S, Spröer C, Rohde M, Lauer B, Labeda DP, Klenk H-P (2011) Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009. Int J Syst Evol Microbiol 61:2304–2310, International Journal of Systematic and Evolutionary Microbiologyijs.sgmjournals.orgCrossRefGoogle Scholar
  72. Williams ST, Cross T (1971) Actinomycetes. In: Booth C (ed) Methods in microbiology, vol 4. Academic, London, pp 295–334Google Scholar
  73. Williams ST, Lanning S, Wellington EMH (1984) Ecology of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of Actinomycetes. Academic, London, pp 481–528Google Scholar
  74. Xu J, Rao JR, Millar BC, Elborn JS, Evans J, Barr JG, Moore JE (2002) Improved molecular identification of Thermoactinomyces spp. associated with mushroom worker’s lung by 16S rDNA sequence typing. J Med Microbiol 51:1117–1127PubMedGoogle Scholar
  75. Yang G, Qin D, Wu C, Yuan Y, Zhou S, Cai Y (2013) Kroppenstedtia guangzhouensis sp. nov., a thermoactinomycete isolated from soil. Int J Syst Evol Microbiol 63:4077–4080PubMedCrossRefGoogle Scholar
  76. Yao S, Liu Y, Zhang M, Zhang X, Li H, Zhao T, Xin C, Xu L, Zhang B, Cheng C (2014) Thermoactinomyces daqus sp. nov., a thermophilic bacterium isolated from high-temperature Daqu. Int J Syst Evol Microbiol 64:206–210PubMedCrossRefGoogle Scholar
  77. Yassin AF, Hupfer H, Klenk H-P, Siering C (2009) Desmospora activa gen. nov., sp. nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. Int J Syst Evol Microbiol 59:454–459PubMedCrossRefGoogle Scholar
  78. Yoon JH, Park YH (2000) Phylogenetic analysis of the genus Thermoactinomyces based on 16S rDNA sequences. Int J Syst Evol Microbiol 50:1081–1086PubMedCrossRefGoogle Scholar
  79. Yoon JH, Shin YK, Park TH (2000) DNA–DNA relatedness among Thermoactinomyces species: Thermoactinomyces candidus as a synonym of Thermoactinomyces vulgaris and Thermoactinomyces thalpophilus as a synonym of Thermoactinomyces sacchari. Int J Syst Evol Microbiol 50:1905–1908PubMedGoogle Scholar
  80. Yoon JH, Kim IG, Shin YK, Park YH (2005) Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 55:395–400PubMedCrossRefGoogle Scholar
  81. Yu TT, Zhang BH, Yao JC, Tang SK, Zhou EM, Yin YR, Wei DQ, Ming H, Li WJ (2012) Lihuaxuella thermophila gen. nov., sp. nov., isolated from a geothermal soil sample in Tengchong, Yunnan, south-west China. Antonie Van Leeuwenhoek (doi: 10.1007/s10482-012-9771-6)Google Scholar
  82. Zhang XM, He J, Zhang DF, Chen W, Jiang Z, Sahu MK, Sivakumar K, Li WJ (2013) Marininema halotolerans sp. nov., a novel thermoactinomycete isolated from a sediment sample, and emended description of the genus Marininema Liet al. 2012. Int J Syst Evol Microbiol 63:4562–4567PubMedCrossRefGoogle Scholar
  83. Zhang Y-X, Dong C, Biao S (2007) Planifilum yunnanense sp. nov., a thermophilic thermoactinomycete isolated from a hot spring. Int J Syst Evol Microbiol 57:1851–1854PubMedCrossRefGoogle Scholar
  84. Zhang J, Tang S-K, Zhang Y-Q, Yu L-Y, Klenk H-P, Li W-J (2010) Laceyella tengchongensis sp. nov., a thermophile isolated from soil of a volcano. Int J Syst Evol Microbiol 60:2226–2230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Leonor Carrillo
    • 1
  • Marcelo Rafael Benítez-Ahrendts
    • 1
  1. 1.National University of JujuyJujuyArgentina

Personalised recommendations