The Family Sporolactobacillaceae

  • Young-Hyo Chang
  • Erko Stackebrandt
Reference work entry


With Sporolactobacillus, Tuberibacillus, and Pullulanibacillus, the family Sporolactobacillaceae (Ludwig W, Schleifer K-H, Whitman WB. Family VII Sporolactobacillaceae. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology, The Firmicutes, 2nd edn. Springer, Dordrecht, p 386, Validation List N° 132 Int J Syst Evol Microbiol, 2010, 60:469–472, 2009) embraces three genera of Gram-positive, spore-forming rods with identical peptidoglycan and menaquinone composition and similar fatty acid composition. A fourth genus with no standing in nomenclature, Scopulibacillus, should be validated and added to the family. On the other hand, the genus, Sinobaca, considered a member of the family by some systematists, shows a separate phylogenetic position and differs in phenotypic properties from members of Sporolactobacillaceae. The biotechnological important genus is Sporolactobacillus, as members are potentially probiotic and some members produce high amount of d(−)-lactic acid in batch and continuous cultures containing inexpensive agricultural raw material. The stereocomplex of d- and l-lactic acid is of industrial importance for the production of polylactic acid, widely used in the packaging, food, cosmetic, pharmaceutical, and leather industries as well as in agriculture and medicine.


Polylactic Acid Potassium Sorbate Peritrichous Flagellum Probiotics Diet Swell Sporangium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Parts of this chapter has been prepared under the EMbaRC project [EU Seventh Framework Programme Research Infrastructures INFRA-2008- Biological Resources Centres (BRCs) for microorganisms (Grant agreement number: FP7-228310)] to support science in BRCs. Part of this work was supported by grant of the KRIBB Research Initiative Program funded by the Ministry of Education, Science and Technology, Republic of Korea.


  1. Andersch I, Pianka S, Fritze D, Claus D (1994) Description of Bacillus laevolacticus (ex Nakayama and Yanoshi 1967) sp. nov., nom. rev. Int J Syst Bacteriol 44:659–664CrossRefGoogle Scholar
  2. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus as revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206CrossRefGoogle Scholar
  3. Avinc O, Khoddami A (2009) Overview of poly(lactic acid) (PLA) fibre. Fibre Chemist 41:391–401CrossRefGoogle Scholar
  4. Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727PubMedCrossRefGoogle Scholar
  5. Chang YH, Jung MY, Park IS, Oh HM (2008) Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 58:2316–2320PubMedCrossRefGoogle Scholar
  6. Chang YH, Jung MY, Park IS (2011) Probiotics spore-forming lactic acid bacteria SL153. US Patent 20110014166A1Google Scholar
  7. Collins MD, Jones D (1979) Isoprenoid quinone composition as a guide to the classification of Sporolactobacillus and possibly related bacteria. J Appl Microbiol 47:293–297Google Scholar
  8. Coton M, Fernández M, Trip H, Ladero V, Mulder NL, Lolkema JS, Alvarez MA, Coton E (2011) Characterization of the tyramine-producing pathway in Sporolactobacillus sp. P3J. Microbiology 157:1841–1849PubMedCrossRefGoogle Scholar
  9. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) (2009) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, DordrechtGoogle Scholar
  10. Dellaglio F, Bottazzi V, Vescovo M (1975) Deoxyribonucleic acid homology among Lactobacillus species of the subgenus Streptobacterium Orla-Jensen. Int J Syst Bacteriol 25:160–172CrossRefGoogle Scholar
  11. Doores S, Westhoff DC (1981) Heat resistance of Sporolactobacillus inulinus. J Food Sci 46:810–812CrossRefGoogle Scholar
  12. Doores S, Westhoff DC (1983) Selective method for the isolation of Sporolactobacillus from food and environmental sources. J Appl Microbiol 54:273–280Google Scholar
  13. Farrow JAE, Wallbanks S, Collins MD (1994) Phylogenetic interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus. Int J Syst Bacteriol 44:74–82PubMedCrossRefGoogle Scholar
  14. Fox GE, Pechman KR, Woese CR (1977) Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol 27:44–57CrossRefGoogle Scholar
  15. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedCrossRefGoogle Scholar
  16. Fujita R, Mochida K, Kato Y, Goto K (2010) Sporolactobacillus putidus sp. nov., an endospore-forming lactic acid bacterium isolated from spoiled orange juice. Int J Syst Evol Microbiol 60:1499–1503PubMedCrossRefGoogle Scholar
  17. Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of d-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4:1021–1027PubMedCrossRefGoogle Scholar
  18. Fukushima K, Chang YH, Kimura Y (2007) Enhanced stereocomplex formation of poly(l-lactic acid) and poly(d-lactic acid) in the presence of stereoblock poly(lactic acid). Macromol Biosci 7:829–835PubMedCrossRefGoogle Scholar
  19. Gao C, Ma CQ, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939PubMedCrossRefGoogle Scholar
  20. Hatayama K, Shoun H, Ueda Y, Nakamura A (2006) Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. Int J Syst Evol Microbiol 56:2545–2551PubMedCrossRefGoogle Scholar
  21. Henneberg W (1903) Zur Kenntniss der Milchsäurebakterien der Brenneriemaische, der Milch, des Bieres, der Presshefe, der Melasse, der Sauerkohls, der sauren Gurken und des Sauerteigs, sowie einige Bemerkungen über die Milchsäurebakterien des menschlichen Magens. Zeitschr Spiritusind 26:329–332Google Scholar
  22. Huang HY, Huang SY, Chen PY, King VA, Lin YP, Tsen JH (2007) Basic characteristics of Sporolactobacillus inulinus BCRC 14647 for potential probiotic properties. Curr Microbiol 54:396–404PubMedCrossRefGoogle Scholar
  23. Hyronimus B, Le Marrec C, Sassi AH, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197PubMedCrossRefGoogle Scholar
  24. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecular 20:904–906CrossRefGoogle Scholar
  25. Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532PubMedCrossRefGoogle Scholar
  26. Kanwar SS, Tewari HK, Chadha BS, Punj V, Sharma VK (1995) Lactic acid production from molasses by Sporolactobacillus cellulosolvens. Acta Microbiol Immunol Hung 42:331–338PubMedGoogle Scholar
  27. Kim D-S, Sin Y, Kim D-W, Paek J, Kim RN, Jung MY, Park I-S, Kim A, Kang A, Park H-S, Choi S-H, Chang Y-H (2012) Genome sequence of the probiotic bacterium Sporolactobacillus vineae SL153T. J Bacteriol 194:3015–3016PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kitahara K (1940) Studies on the lactic acid bacteria isolated from mashes of various kinds of cereals. J Agric Chem Soc Jpn 16:123, article in Japanese, cited by Kitahara and Suzuki, 1963CrossRefGoogle Scholar
  29. Kitahara K, Lai CL (1967) On the spore formation of Sporolactobacillus inulinus. J Gen Appl Microbiol 13:97–203CrossRefGoogle Scholar
  30. Kitahara K, Suzuki J (1963) Sporolactobacillus nov. subgen. J Gen Appl Microbiol 9:59–71CrossRefGoogle Scholar
  31. Kitahara K, Toyota T (1972) Auto-spheroplastization and cell-permeation in Sporolactobacillus inulinus. J Gen Appl Microbiol 18:99–107CrossRefGoogle Scholar
  32. Lacey J, Cross T (1989) Genus Thermoactinomyces Tsilinsky 1899, 501AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2574–2585Google Scholar
  33. Lee SD, Lee DW (2009) Scopulibacillus darangshiensis gen. nov., sp. nov., isolated from rock. J Microbiol 47:710–715PubMedCrossRefGoogle Scholar
  34. Li W-J, Zhang Y-Q, Schumann P, Tian X-P, Zhang Y-Q, Xu L-H, Jiang C-L (2006) Sinococcus qinghaiensis gen. nov., sp. nov., a novel member of the order Bacillales from a saline soil in China. Int J Syst Evol Microbiol 56:1189–1192PubMedCrossRefGoogle Scholar
  35. Li WJ, Zhi XY, Euzéby JP (2008) Proposal of Yaniellaceae fam. nov., Yaniella gen. nov. and Sinobaca gen. nov. as replacements for the illegitimate prokaryotic names Yaniaceae Li et al. 2005, Yania Li et al. 2004, emend Li et al. 2005, and Sinococcus Li et al. 2006, respectively. Int J Syst Evol Microbiol 58:525–527PubMedCrossRefGoogle Scholar
  36. Ludwig W, Schleifer K-H, Whitman WB (2009) Family VII Sporolactobacillaceae. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, The Firmicutes. Springer, Dordrecht, p 386, Validation List N° 132 Int J Syst Evol Microbiol, 2010, 60:469–472Google Scholar
  37. Miller A III, Sandine WE, Elliker PR (1970) Deoxyribonucleic acid homology in the genus Lactobacillus. Can J Microbiol 17:625–634CrossRefGoogle Scholar
  38. Nakayama O (1960) Bull Fac Agr Tamagawa Univ 1:73 (cited by Kitahara and Suzuki, 1963)Google Scholar
  39. Nakayama O, Yanoshi M (1967) Spore-bearing lactic acid bacteria isolated from rhizosphere. I. Taxonomic studies on Bacillus laevolacticus nov. sp. and Bacillus racemilacticus nov. sp. J Gen Appl Microbiol 13:139–153CrossRefGoogle Scholar
  40. Rinderknecht H, Wilding P, Haverback BJ (1967) A new method for the determination of α-amylase. Experientia 23:805PubMedCrossRefGoogle Scholar
  41. Rychen G, Simões Nunes C (1993) Effects of a microbial probiotic (Sporolactobacillus P44) on postprandial porto-arterial concentrations differences of glucose, galactose and amino-nitrogen in the growing pig. Reprod Nutr Dev 33(53):1–539Google Scholar
  42. Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus and Brevibacillus. Compr Rev Food Sci Food Saf 2:101–110CrossRefGoogle Scholar
  43. Sawai H, Na K, Sasaki N, Mimitsuka T, Minegishi S, Henmi M, Yamada K, Shimizu S, Yonehara T (2011) Membrane-integrated fermentation system for improving the optical purity of d-lactic acid produced during continuous fermentation. Biosci Biotechnol Biochem 75:2326–2332PubMedCrossRefGoogle Scholar
  44. Shukla VB, Zhou S, Yomano LP, Shanmugam KT, Preston JF, Ingram LO (2004) Production of D(–)-lactic acid from sucrose and molasses. Biotechnol Lett 26:689–693Google Scholar
  45. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  46. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  47. Suzuki J, Kitahara K (1964) Base compositions of deoxyribonucleic acid in Sporolactobacillus inulinus and other lactic acid bacteria. J Gen Appl Microbiol 10:305–311CrossRefGoogle Scholar
  48. Suzuki T, Yamasoto K (1994) Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiol Lett 115:13–18PubMedCrossRefGoogle Scholar
  49. Tomimura E, Zeman NW, Frankiewicz JR, Teague WM (1990) Description of Bacillus naganoensis sp. nov. Int J Syst Bacteriol 40:123–125PubMedCrossRefGoogle Scholar
  50. Wang L, Zhao B, Li F, Xu K, Ma C, Tao F, Li Q, Xu P (2010) Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017PubMedCrossRefGoogle Scholar
  51. Xu P, Ma Y, Zhao B, Qin J, Yu B, Wang L, Ma C, Yan S, Zhou S (2007) Method for producing d-lactic acid and brood-cell Lactobacillus special for the same. China Patent 200710176056Google Scholar
  52. Xu TT, Bai ZZ, Wang LJ, He BF (2010) Breeding of d(−)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Appl Biochem Biotechnol 160:314–321PubMedCrossRefGoogle Scholar
  53. Yanagida F, Suzuki K-I (2009) Genus I Sporolactobacillus Kitahara and Suzuki 1963, 69AL. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, Dordrecht, pp 386–391Google Scholar
  54. Yanagida F, Suzuki KI, Kozaki M, Komagata K (1997) Proposal of Sporolactobacillus nakayamae subsp nakayamae sp. nov., subsp. nov., Sporolactobacillus nakayamae subsp. racemicus subsp. nov., Sporolactobacillus terrae sp. nov., Sporolactobacillus kofuensis sp. nov., and Sporolactobacillus lactosus sp. nov. Int J Syst Bacteriol 47:499–504CrossRefGoogle Scholar
  55. Yanagida F, Chen Y-S, Shinohara T (2005) Isolation and characterization of lactic acid bacteria from soils in vineyards. J Gen Appl Microbiol 51:313–318PubMedCrossRefGoogle Scholar
  56. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  57. Yu B, Su F, Wang L, Xu K, Zhao B, Xu P (2011) Draft genome sequence of Sporolactobacillus inulinus Strain CASD, an efficient d-lactic acid-producing bacterium with high-concentration lactate tolerance capability. J Bacteriol 193:5864–5865PubMedCrossRefPubMedCentralGoogle Scholar
  58. Zhao B, Wang L, Li F, Hua D, Ma C, Ma Y, Xu P (2010) Kinetics of d-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresour Technol 101:6499–6505PubMedCrossRefGoogle Scholar
  59. Zheng H, Gong J, Chen T, Chen X, Zhao X (2010) Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of d-lactic acid by genome shuffling. Appl Microbiol Biotechnol 85:1541–1549PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Korean Collection for Type Cultures, Biological Resource CentreKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  2. 2.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHBraunschweigGermany

Personalised recommendations