Advertisement

The Family Pasteuriaceae

  • Erko Stackebrandt
Reference work entry

Abstract

The species of the genus Pasteuria are rare examples in bacteriological systematics as their description is solely based on morphology, ultrastructure, and host relationships. As none of them can be grown axenically, the type strains of species have not been deposited in public service collections; most of them can be grown in the laboratory together with its host. Today, after the establishment of the Candidatus category, novel taxa are not described as species but receive the Candidatus status; e.g., Phylogenetically, Pasteuria forms a monophyletic clade within the Firmicutes, branching next the members of the family Thermoactinosporaceae. Recent literature on Pasteuria concentrates on bacterium-host relationships and ecology, and this contribution adds some of this information to the excellent contribution of Sayre and Starr, revised by Dickson et al. (2009) in Bergey’s Manual of Systematic Bacteriology, 2nd edition.

References

  1. Andras JP, Ebert D (2013) A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia. Mol Ecol 22:972–986PubMedCrossRefGoogle Scholar
  2. Atibalentja N, Noel GR, Domier LL (2000) Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from the 16S rDNA sequence. Int J Syst Evol Microbiol 50:605–613PubMedCrossRefGoogle Scholar
  3. Atibalentja N, Noel GR, Ciancio A (2004) A simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16SrDNA from small numbers of endospores. J Nematol 36:100–105PubMedPubMedCentralGoogle Scholar
  4. Auld SKJR, Edel KH, Little TJ (2012) The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose. Evolution 66:3287–3293PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ben-Ami F, Routtu J (2013) The expression and evolution of virulence in multiple infections: the role of specificity, relative virulence and relative dose. BMC Evol Biol 13:97PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ben-Ami F, Mouton L, Ebert D (2008) The effects of multiple infections on the expression and evolution of virulence in a Daphnia-endoparasite system. Evolution 62:1700–1711PubMedCrossRefGoogle Scholar
  7. Charles L, Carbone I, Davies KG, Bird D, Burke M, Kerry BR, Opperman CH (2005) Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. J Bacteriol 187:5700–5708PubMedCrossRefPubMedCentralGoogle Scholar
  8. Duan YP, Castro HF, Hewlett TE, White JH, Ogram AV (2003) Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils. Int J Syst Evol Microbiol 53:105–112, Check for fragment sizePubMedCrossRefGoogle Scholar
  9. Ebert D (2008) Host-parasite coevolution: Insights from the Daphnia-parasite model system. Curr Opin Microbiol 11:290–301PubMedCrossRefGoogle Scholar
  10. Giblin-Davis RM, Williams DS, Bekal S, Dickson DW, Brito JA, Becker JO, Preston JF (2003) ‘Candidatus Pasteuria usgae’ sp. nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus. J Syst Evol Microbiol 53:197–200CrossRefGoogle Scholar
  11. Giblin-Davis RM, Nong G, Preston JF, Williams DS, Center BJ, Brito JA, Dickson DW (2011) ‘Candidatus Pasteuria aldrichii’, an obligate endoparasite of the bacterivorous nematode Bursilla. Int J Syst Evol Microbiol 61:2073–2080PubMedCrossRefGoogle Scholar
  12. King KC, Auld SKJR, Wilson PJ, James J, Little TJ (2013) The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution. Ecol Evol 3:197–203PubMedCrossRefPubMedCentralGoogle Scholar
  13. Laurent E (1890) Sur le microbe des nodosités des légumineuses. Comptes Rendus de l'Académie des Sciences Paris 111:754–756Google Scholar
  14. Luijckx P, Ben-Ami F, Mouton L, Du Pasquier L, Ebert D (2011) Cloning of the unculturable parasite Pasteuria ramosa and its Daphnia host reveals extreme genotype-genotype interactions. Ecol Lett 14:125–131PubMedCrossRefGoogle Scholar
  15. Luijckx P, Duneau D, Andras JP, Ebert D (2013a) Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species. Evolution. doi:10.1111/evo.12289PubMedGoogle Scholar
  16. Luijckx P, Fienberg H, Duneau D, Ebert D (2013b) A matching-allele model explains host resistance to parasites. Curr Biol 23:1085–1088PubMedCrossRefGoogle Scholar
  17. Mauchline TH, Mohan S, Davies KG, Schaff JE, Opperman CH, Kerry BR, Hirsch PR (2010) A method for release and multiple strand amplification of small quantities of DNA from endospores of the fastidious bacterium Pasteuria penetrans. Lett Appl Microbiol 50:515–521PubMedCrossRefGoogle Scholar
  18. Mauchline TH, Knox R, Mohan S, Powers SJ, Kerry BR, Davies KG, Hirsch PR (2011) Identification of new single nucleotide polymorphism-based markers for inter- and intraspecies discrimination of obligate bacterial parasites (Pasteuria spp.) of invertebrates. Appl Environ Microbiol 77:6388–6394PubMedCrossRefPubMedCentralGoogle Scholar
  19. McElroy K, Mouton L, Du Pasquier L, Qi W, Ebert D (2011) Characterisation of a large family of polymorphic collagen-like proteins in the endospore-forming bacterium Pasteuria ramosa. Res Microbiol 162:701–714PubMedCrossRefGoogle Scholar
  20. Metchnikoff E (1888) Pasteuria ramosa un représentant des bactéries à division longitudinale. Annales de l’Institut Pasteur (Paris) 2:165–170Google Scholar
  21. Mohan S, Mauchline TH, Rowe J, Hirsch PR, Davies KG (2012) Pasteuria endospores from Heterodera cajani (Nematoda: Heteroderidae) exhibit inverted attachment and altered germination in cross-infection studies with Globodera pallida (Nematoda: Heteroderidae). FEMS Microbiol Ecol 79:675–684PubMedCrossRefGoogle Scholar
  22. Mouton L, Ebert D (2008) Variable-number-of-tandem-repeats analysis of genetic diversity in Pasteuria ramosa. Curr Microbiol 56:447–552PubMedCrossRefGoogle Scholar
  23. Mouton L, Nong G, Preston JF, Ebert D (2007) Variable-number tandem repeats as molecular markers for biotypes of Pasteuria ramosa in Daphnia spp. Appl Environ Microbiol 73:3715–3718PubMedCrossRefPubMedCentralGoogle Scholar
  24. Mouton L, Traunecker E, McElroy K, Du Pasquier L, Ebert D (2009) Identification of a polymorphic collagen-like protein in the crustacean bacteria Pasteuria ramosa. Res Microbiol 160:792–799PubMedCrossRefGoogle Scholar
  25. Noel GR, Atibalentja N, Domier LL (2005) Emended description of Pasteuria nishizawae. Int J Syst Evol Microbiol 55:1681–1685PubMedCrossRefGoogle Scholar
  26. Sayre RM, Starr MP (1985) Pasteuria penetrans (ex Thorne, 1940) nom. rev., comb. n., sp. n., a mycelial and endospore-forming bacterium parasitic in plant-parasitic nematodes. Proc Helminthol Soc Wash 52:149–165, Validation List no. 20. (1986) Int J Syst Bacteriol 36:354–356Google Scholar
  27. Sayre RM, Wergin WP, Schmidt JM, Starr MP (1991) Pasteuria nishizawae sp. nov., a mycelial and endosporeforming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera. Res Microbiol 142:551–564, Validation List no. 41 (1992) Int J Syst Bacteriol 42:327–328PubMedCrossRefGoogle Scholar
  28. Sayre RM, Starr MP, revised by Dickson DW, Preston JF III, Giblin-Davis RM, Noel GR, Ebert D, Bird GW (2009) Genus I. Pasteuria. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 328–347Google Scholar
  29. Schlotz N, Ebert D, Martin-Creuzburg D (2013) Dietary supply with polyunsaturated fatty acids and resulting maternal effects influence host -parasite interactions. BMC Ecol 13:41PubMedCrossRefPubMedCentralGoogle Scholar
  30. Schmidt LM, Mouton L, Nong G, Ebert D, Preston JF (2008) Genetic and immunological comparison of the cladoceran parasite Pasteuria ramosa with the nematode parasite Pasteuria penetrans. Appl Env Microbiol 74:259–264CrossRefGoogle Scholar
  31. Schmidt LM, Hewlett TE, Green A, Simmons LJ, Kelley K, Doroh M, Stetina SR (2010) Molecular and morphological characterization and biological control capabilities of a Pasteuria ssp. parasitizing Rotylenchulus reniformis, the reniform nematode. J Nematol 42:207–217PubMedPubMedCentralGoogle Scholar
  32. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  33. Starr MP, Sayre RM (1988) Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant parasitic nematodes of the genera Pratylenchus and Melodogyne. Ann Inst Pasteur 139:11–31, Validation List no. 26. (1988) Int J Syst Bacteriol 38:328–329CrossRefGoogle Scholar
  34. Waterman JT, McK BD, Opperman CH (2006) A method for Isolation of Pasteuria penetrans endospores for bioassay and genomic studies. J Nematol 38:165–167PubMedPubMedCentralGoogle Scholar
  35. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHBraunschweigGermany

Personalised recommendations