Advertisement

The Genus Geobacillus

  • Niall A. Logan
Reference work entry

Abstract

Bacillus stearothermophilus was established in 1920, and many isolates of thermophilic, aerobic endosporeformers were subsequently allocated to it, so that the species became heterogeneous. Between the 1960s and the 1980s various phenotypic techniques demonstrated this heterogeneity, and new thermophilic species were proposed, but as late as the first edition of Bergey’s Manual of Systematic Bacteriology, the authors were unable to take the taxonomy of the B. stearothermophilus group any further, in the absence of sufficient data. With the increasing availability of molecular analyses, several novel species were described, and in 2001 the genus Geobacillus was proposed to accommodate B. stearothermophilus and its relatives. Some other thermophilic Bacillus species were subsequently transferred to the new genus. However, this expansion of Geobacillus, to 17 species, left the type species, G. stearothermophilus, without a modern description based upon a polyphasic taxonomic study. Also, the taxonomic positions of several other species were unclear and other taxa awaited validation. Polyphasic taxonomic studies published in 2011 and 2012 countered the continuing expansion of the genus by showing that a substantial number of species were synonymous and by transferring some other species to Anoxybacillus and the new genus Caldibacillus. The genus Geobacillus now comprises 11 species: G. stearothermophilus, G. caldoxylosilyticus, G. jurassicus, G. subterraneus, G. thermantarcticus, G. thermocatenulatus, G. thermodenitrificans, G. thermoglucosidans, G. thermoleovorans, G. toebii, and G. uzenensis. This article summarizes the taxonomic history of the genus and outlines the habitats, isolation, and properties of its species.

Keywords

Thermophilic Bacillus Emended Description Geobacillus Thermoleovorans Geobacillus Thermodenitrificans Polyphasic Taxonomic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adkins JP, Cornell LA, Tanner RA (1992) Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol J 10:87–97Google Scholar
  2. Ahmad S, Scopes RK, Rees GN, Patel BKC (2000) Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523PubMedGoogle Scholar
  3. Allen MB (1953) The thermophilic aerobic sporeforming bacteria. Bacteriol Rev 17:125–173PubMedPubMedCentralGoogle Scholar
  4. Alvarez M, Wouters J, Maes D, Mainfroid V, Rentier-Delrue F, Wyns L, Depiereux E, Martial JA (1999) Lys13 plays a crucial role in the functional adaptation of the thermophilic triose-phosphate isomerase from Bacillus stearothermophilus to high temperatures. J Biol Chem 274:19181–19187PubMedGoogle Scholar
  5. Ambroz A (1913) Denitrobacterium thermophilum spec nova, ein Beitrag zur Biologie der thermophilen Bakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 37:3–16Google Scholar
  6. Andersson M, Laukkanen M, Nurmiaho-Lassila E-L, Rainey FA, Niemelä SI, Salkinoja-Salonen M (1995) Bacillus thermosphaericus sp. nov., a new thermophilic ureolytic Bacillus isolated from air. Syst Appl Microbiol 18:203–220Google Scholar
  7. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analyses of small subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206Google Scholar
  8. Baillie A, Walker PD (1968) Enzymes of thermophilic aerobic spore-forming bacteria. J Appl Bacteriol 31:114–119PubMedGoogle Scholar
  9. Banat I, Marchant R (2011) Geobacillus activities in soil and oil contamination remediation. In: Logan NA, De Vos P (eds) Aerobic, endospore-forming soil bacteria. Springer, Berlin, pp 259–270Google Scholar
  10. Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol 54:2197–2201PubMedGoogle Scholar
  11. Blanc M, Marilley L, Beffa T, Aragno M (1997) Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiol Ecol 28:141–149Google Scholar
  12. Bonjour F, Aragno M (1984) Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch Microbiol 139:397–401Google Scholar
  13. Breed RS, Murray EGD, Smith NR (1957) Bergey’s manual of determinative bacteriology, 7th ed. Williams and Wilkins, BaltimoreGoogle Scholar
  14. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL (2000) Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 50:2009–2012PubMedGoogle Scholar
  15. Caccamo D, Maugeri TL, Gugliandolo C (2001) Identification of thermophilic and marine bacilli from shallow thermal vents by restriction analysis of their amplified 16S rDNA. J Appl Microbiol 91:520–524PubMedGoogle Scholar
  16. Castenholst RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504Google Scholar
  17. Chen XG, Stabnikova O, Tay JH, Wang JY, Tay ST (2004) Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8:489–498PubMedGoogle Scholar
  18. Chopra AK, Mathur DK (1984) Isolation, screening and characterisation of thermophilic Bacillus species isolated from dairy products. J Appl Bacteriol 57:263–271PubMedGoogle Scholar
  19. Cihan AC, Ozcan B, Tekin N, Cokmus C (2011) Geobacillus themodenitrificans subsp. calidus, subsp. nov., a thermophilic and a-glucosidase producing bacterium isolated from Kizilcahamam, Turkey. J Gen Appl Microbiol 57:83–92PubMedGoogle Scholar
  20. Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. The Williams and Wilkins, Baltimore, pp 1105–1139Google Scholar
  21. Combet-Blanc Y, Ollivier B, Streicher C, Patel BKC, Dwivedi PP, Pot B, Prensier G, Garcia J-L (1995) Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45:9–16PubMedGoogle Scholar
  22. Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly “thermoglucosidasius”); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485PubMedGoogle Scholar
  23. Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic, thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15Google Scholar
  24. De Bartolemeo A, Trotta F, La Rosa F, Saltalamacchia G, Mastrandrea V (1991) Numerical analysis and DNA base compositions of some thermophilic Bacillus species. Int J Syst Bacteriol 41:502–509Google Scholar
  25. de Vrij W, Speelmans G, Heyne RIR, Konings WN (1990) Energy transduction and amino acid transport in thermophilic aerobic and fermentative bacteria. FEMS Microbiol Rev 75:183–200Google Scholar
  26. Deák T, Temár É (1988) Simplified identification of aerobic spore-formers in the investigation of foods. Int J Food Microbiol 6:115–125PubMedGoogle Scholar
  27. Degryse E, Glansdorff N, Piérard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196PubMedGoogle Scholar
  28. Deinhard G, Blanz P, Poralla K, Altan E (1987a) Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst Appl Microbiol 10:47–53Google Scholar
  29. Deinhard G, Saar J, Krischke W, Poralla K (1987b) Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing omega-cycloheptane fatty acids. Syst Appl Microbiol 10:68–73Google Scholar
  30. Demharter W, Hensel R (1989) Bacillus thermocloacae sp. nov., a new thermophilic species from sewage sludge. Syst Appl Microbiol 11:272–276Google Scholar
  31. Dinsdale AE, Halket G, Coorevits A, Van Landschoot A, Busse H-J, De Vos P, Logan NA (2011) Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. Int J Syst Evol Microbiol 61:1802–1810PubMedGoogle Scholar
  32. Donk PJ (1920) A highly resistant thermophilic organism. J Bacteriol 5:373–374PubMedPubMedCentralGoogle Scholar
  33. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607PubMedPubMedCentralGoogle Scholar
  34. Fortina MG, Pukall R, Schumann P, Mora D, Parini C, Manachini PL, Stackebrandt E (2001a) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455PubMedGoogle Scholar
  35. Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E (2001b) Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int J Syst Evol Microbiol 51:2063–2071PubMedGoogle Scholar
  36. Galesloot TE, Labots H (1959) Thermofiele sporevormers in melk, vooral met betrekking tot de bereiding van gesteriliseerde melk en chocolademelk. Ned Melk Zuiveltijd 13:155–179Google Scholar
  37. Garcia JL, Roussos S, Bensoussan M, Bianchi A, Mandel M (1982) Numerical taxonomy of a thermophilic “Bacillus” species isolated from West African rice soils. Ann Microbiol (Paris) 133:471–488Google Scholar
  38. Gibson T, Gordon RE (1974) Bacillus Cohn 1872. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams and Wilkins, Baltimore, pp 529–550Google Scholar
  39. Golovacheva RS, Egorova LA, Loginova LG (1965) Ecology and systematics of aerobic obligate-thermophilic bacteria isolated from thermal localities on Mount Yangan-Tau and Kunashir Isle of the Kuril chain. Microbiology (English translation of Mikrobiologiya) 34:693–698Google Scholar
  40. Golovacheva RS, Loginova LG, Salikhov TA, Kolesnikov AA, Zaitseva GN (1975) A new thermophilic species B. thermocatenulatus sp. nov. Microbiology (English translation of Mikrobiologiya) 44:230–233Google Scholar
  41. Gordon RE, Smith NR (1949) Aerobic sporeforming bacteria capable of growth at high temperatures. J Bacteriol 58:327–341PubMedPubMedCentralGoogle Scholar
  42. Grinstead E, Clegg LFL (1955) Spore-forming organisms in commercial sterilized milk. J Dairy Res 22:178–190Google Scholar
  43. Guicciardi A, Biffi MR, Manachini PL, Craveri A, Scolastico C, Rindone B, Craveri C (1968) Ricerche preliminary su un nuovo schizomicete termofilo del genere Bacillus e caratterizzazione del pigmento rosso prodotto. Ann Microbiol (Milan) 18:191–205Google Scholar
  44. Heinen UJ, Heinen W (1972) Characteristics and properties of a caldoactive bacterium producing extracellular enzymes and two related strains. Arch Mikrobiol 82:1–23PubMedGoogle Scholar
  45. Heinen W, Lauwers AM, Mulders JWM (1982) Bacillus flavothermus, a newly isolated facultative thermophile. Antonie Van Leeuwenhoek J Microbiol Serol 48:265–272Google Scholar
  46. Heyndrickx M, Lebbe L, Vancanneyt M, Kersters K, De Vos P, Logan NA, Forsyth G, Nazli S, Ali N, Berkeley RCW (1997) A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al. 1996) as Aneurinibacillus thermoaerophilus comb. nov. and emended descriptions of A. aneurinilyticus, of A. migulanus and of A. thermoaerophilus. Int J Syst Bacteriol 47:808–817Google Scholar
  47. Kalogridou-Vassilliadu D (1992) Biochemical activities of Bacillus species isolated from flat sour evaporated milk. J Dairy Sci 75:2681–2686Google Scholar
  48. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–96Google Scholar
  49. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70PubMedGoogle Scholar
  50. Kawamura S, Abe Y, Ueda T, Masumoto K, Imoto T, Yamasaki N, Kimura M (1998) Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus. J Biol Chem 273:19982–19987PubMedGoogle Scholar
  51. Klaushofer H, Hollaus F (1970) Zur Taxonomie der hoch-thermophilen, in Zukerfabriksäften vorkommenden aeroben sporenbildner. Z Zuckerrind 20:465–470Google Scholar
  52. Klenk H-P, Lapidus A, Chertkov O, Copeland A, Del Rio TG, Nolan M, Lucas S, Chen F, Tice H, Cheng J-F, Han C, Bruce D, Goodwin L, Pitluck S, Pati A, Ivanova N, Mavromatis K, Daum C, Chen A, Palaniappan K, Chang Y-J, Land M, Hauser L, Jeffries CD, Detter JC, Rohde M, Abt B, Pukall R, Göker M, Bristow J, Markowitz V, Hugenholtz P, Eisen JA (2012) Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. Stand Genomic Sci 5:121–134Google Scholar
  53. Kuisiene N, Raugalas J, Chitavichius D (2004) Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 54:1991–1995PubMedGoogle Scholar
  54. Leadbetter ER, Foster JW (1958) Studies on some methane-utilizing bacteria. Arch Microbiol 30:91–118Google Scholar
  55. Lee D-W, Koh Y-S, Kim K-J, Kim B-C, Choi H-J, Kim D-S, Suhatono MT, Pyun Y-R (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400PubMedGoogle Scholar
  56. Llarch À, Logan NA, Castellví J, Prieto MJ, Guinea J (1997) Isolation and characterization of thermophilic Bacillus species from Deception Island, South Shetland archipelago. Microb Ecol 34:58–65PubMedGoogle Scholar
  57. Llaudes MK, Zhao L, Duffy S, Schaffner DW (2001) Simulation and modelling of the effect of small inoculum size on time to spoilage by Bacillus stearothermophilus. Food Microbiol 18:395–405Google Scholar
  58. Logan NA, Berkeley RCW (1981) Classification and identification of members of the genus Bacillus. In: Berkeley RCW, Goodfellow M (eds) The aerobic endospore-forming bacteria. Academic, London, pp 105–140Google Scholar
  59. Logan NA, De Vos P, Dinsdale A (2009) Genus Geobacillus Nazina et al. 2001. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 144–160Google Scholar
  60. Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35:493–496Google Scholar
  61. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R, Fortina MG (2000) Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50:1331–1337PubMedGoogle Scholar
  62. Marchant R, Banat IM, Rahman TJS, Berzano M (2002) What are high-temperature bacteria doing in cold environments? Trends Microbiol 10:120–121PubMedGoogle Scholar
  63. Markossian S, Becker P, Markl H, Antranikian G (2000) Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an Icelandic hot spring. Extremophiles 4:365–371PubMedGoogle Scholar
  64. Marteinsson VG, Birrien J-L, Jeanthon C, Prieur D (1996) Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21:255–266Google Scholar
  65. Martins LO, Jurado AS, Madiera VMC (1990) Composition of polar lipid acyl chains of Bacillus stearothermophilus as affected by temperature and calcium. Biochim Biophys Acta 1045:17–20PubMedGoogle Scholar
  66. Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 24:572–587PubMedGoogle Scholar
  67. Meier-Stauffer K, Busse H-J, Rainey FA, Burghardt J, Scheberl A, Hollaus F, Kuen B, Makristathis A, Sleytr UB, Messner P (1996) Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46:532–541Google Scholar
  68. Merkel GJ, Underwood WH, Perry JJ (1978) Isolation of thermophilic bacteria capable of growth solely in long-chain hydrocarbons. FEMS Microbiol Lett 3:81–83Google Scholar
  69. Miñana-Galbis D, Pinzón DL, Lorén JG, Manresa Á, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:433–446Google Scholar
  70. Minnikin DE, Abdolrahimzadeh H, Wolf J (1977) Taxonomic significance of polar lipids in some thermophilic members of Bacillus. In Barker AN, Wolf J, Ellar DJ, Dring GJ, Gould GW (eds). Academic, London, pp 879–893Google Scholar
  71. Mishustin EN (1950) Termofilnie mikroorganiszmi w prirode I praktike. Akademi Nauk SSSR, MoskwaGoogle Scholar
  72. Mora D, Fortina MG, Nicastro G, Parini C, Manachini PL (1998) Genotypic characterization of thermophilic bacilli: a study on new soil isolates and several reference strains. Res Microbiol 149:711–722PubMedGoogle Scholar
  73. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans Bacillus kaustophilus, Bacillus thermoglucosidasius, Bacillus thermodenitrificans to Geobacillus as Geobacillus stearothermophilus, Geobacillus thermocatenulatus, Geobacillus thermoleovorans Geobacillus kaustophilus, Geobacillus thermoglucosidasius, Geobacillus thermodenitrifi. Int J Syst Evol Microbiol 51:433–446PubMedGoogle Scholar
  74. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani (Caccamo et al. 2000) comb. nov. Int J Syst Evol Microbiol 54:2019–2024PubMedGoogle Scholar
  75. Nazina TN, Sokolova DS, Grigoryan AA, Shestakova NM, Mikhailova EM, Poltaraus AB, Tourova TP, Lysenko AM, Osipov GA, Belyaev SS (2005) Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 28:43–53PubMedGoogle Scholar
  76. Nicolaus B, Marsiglia F, Esposito E, Trincone A, Lama L, Sharp R, di Prisco G, Gambacorta A (1991) Isolation of five strains of thermophilic eubacteria in Antarctica. Polar Biol 11:425–429Google Scholar
  77. Nicolaus B, Lama L, Esposito E, Manca MC, di Prisco G, Gambacorta A (1996) Bacillus thermoantarcticus sp. nov. from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 16:101–104Google Scholar
  78. Nicolaus B, Lama L, Esposito E, Manca MC, di Prisco G, Gambacorta A (2002) Validation list no. 84. Int J Syst Evol Microbiol 52:3–4Google Scholar
  79. Norris JR, Berkeley RCW, Logan NA, O’Donnell AG (1981) The genera Bacillus and Sporolactobacillus. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria, vol 2. Springer, Berlin/Heidelberg, pp 1711–1742Google Scholar
  80. Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084PubMedPubMedCentralGoogle Scholar
  81. Perl D, Mueller U, Heinemann U, Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol 7:380–383PubMedGoogle Scholar
  82. Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117PubMedGoogle Scholar
  83. Poli A, Romano I, Caliendo G, Nicolaus G, Orlando P, Falco A, Lama L, Gambacorta A, Nicolaus B (2006) Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost. J Gen Appl Microbiol 52:223–234PubMedGoogle Scholar
  84. Prickett PS (1928) Thermophilic and thermoduric microorganisms with special reference to species isolated from milk. New York Agric Exp Stat Tech Bull 147:58Google Scholar
  85. Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882PubMedGoogle Scholar
  86. Rahman RNZRA, Leow TC, Salleh AB, Basri M (2007) Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol 7:77PubMedCentralGoogle Scholar
  87. Rainey FA, Fritze D, Stackebrandt E (1994) The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol Lett 115:205–212PubMedGoogle Scholar
  88. Romano I, Poli A, Lama L, Gambacorta A, Nicolaus B (2005) Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J Gen Appl Microbiol 51:183–189PubMedGoogle Scholar
  89. Sakaff MKLM, Rahman AYA, Saito JA, Hou S, Alama M (2012) Complete genome sequence of the thermophilic bacterium Geobacillus thermoleovorans CCB_US3_UF5. J Bacteriol 194:1239Google Scholar
  90. Schäffer C, Franck WL, Scheberl A, Kosma P, McDermott TR, Messner P (2004) Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 54:2361–2368PubMedGoogle Scholar
  91. Schenk A, Aragano M (1979) Bacillus schlegelii a new species of thermophilic, facultatively chemoli-thoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341Google Scholar
  92. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  93. Scholz T, Demharter W, Hensel R, Kandler O (1987) Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96Google Scholar
  94. Shapton DA, Hindes WR (1963) The standardization of a spore count technique. Chem Indust 41:230–234Google Scholar
  95. Sharp RJ, Bown KJ, Atkinson A (1980) Phenotypic and genotypic characterization of some thermophilic species of Bacillus. J Gen Microbiol 117:201–210PubMedGoogle Scholar
  96. Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946PubMedGoogle Scholar
  97. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420Google Scholar
  98. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  99. Studholme DJ, Jackson RA, Leak DJ (1999) Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol Lett 172:85–90PubMedGoogle Scholar
  100. Sung M-H, Kim H, Bae J-W, Rhee S-K, Jeon CO, Kim K, Kim J-J, Hong S-P, Lee S-G, Yoon J-H, Park Y-H, Baek D-H (2002) Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255PubMedGoogle Scholar
  101. Sunna A, Prowe SG, Stroffregen T, Antranikian G (1997a) Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148:209–216PubMedGoogle Scholar
  102. Sunna A, Tokajian S, Burghardt J, Rainey F, Antranikian G, Hashwa F (1997b) Identification of Bacillus kaustophilus, Bacillus thermocatenulatus and Bacillus strain HSR as members of Bacillus thermoleovorans. Syst Appl Microbiol 20:232–237Google Scholar
  103. Suzuki Y, Kishigami T, Abe S (1976) Production of extracellular α-glucosidase by a thermophilic Bacillus species. Appl Environ Microbiol 31:807–812PubMedPubMedCentralGoogle Scholar
  104. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N, Takagi M, Abe S (1983) Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst Appl Microbiol 4:487–495PubMedGoogle Scholar
  105. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedGoogle Scholar
  106. Takami H, Takaki Y, Chee G-J, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303PubMedPubMedCentralGoogle Scholar
  107. Tanner RS (1989) Monitoring sulfate-reducing bacteria: comparison of enumeration media. J Microbiol Methods 10:83–90Google Scholar
  108. Tolner B, Poolman B, Konings WN (1997) Adaptation of microorganisms and their transport systems to high temperatures. Comp Biochem Physiol 118A:423–428Google Scholar
  109. Walker PD, Wolf J (1961) Some properties of aerobic thermophiles growing at 65°. J Appl Bacteriol 24:iv–vGoogle Scholar
  110. Walker PD, Wolf J (1971) The taxonomy of Bacillus stearothermophilus. In: Barker AN, Gould GW, Wolf J (eds) Spore research 1971. Academic, London, pp 247–262Google Scholar
  111. Weigel J (1986) Methods for isolation and study of thermophiles. In: Brock TD (ed) Thermophiles: general, molecular and applied microbiology. Wiley, New York, pp 17–37Google Scholar
  112. White D, Sharp RJ, Priest FG (1993) A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Van Leeuwenhoek J Microbiol Serol 64:357–386Google Scholar
  113. Wisotzkey JD, Jr Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequences analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269PubMedGoogle Scholar
  114. Wolf J, Chowhury MSU (1971) Taxonomy of B. circulans and B. stearothermophilus. In: Barker AN, Gould GW, Wolf J (eds) Spore research 1971. Academic, London, pp 349–350Google Scholar
  115. Wolf J, Sharp RJ (1981) Taxonomic and related aspects of thermophiles within the genus Bacillus. In: Berkeley RCW, Goodfellow M (eds) The aerobic endospore-forming bacteria. Academic, London, pp 251–296Google Scholar
  116. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  117. Zarilla KA, Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 9:258–264Google Scholar
  118. Zeigler DR (2005) Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 55:1171–1179PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Life SciencesGlasgow Caledonian UniversityGlasgowScotland, UK

Personalised recommendations