The Family Haloplasmataceae

Reference work entry

Abstract

Haloplasmataceae is a family within the order Haloplasmatales, which currently includes one single genus and species: Haloplasma contractile. This family has unusual phenotypic features –the most noticeable being a unique morphology and cellular contractility cycle– and a distinct phylogenetic position between the Firmicutes and the Tenericutes (Mollicutes).

Members of the Haloplasmataceae have been isolated from the upper sediments of a deep-sea anoxic brine in the Red Sea, but cultivation-independent studies have found related sequences in a wide range of biotopes including other extreme environments, contaminated soils and marine sediments, as well as intestinal samples. The isolation and description of new representatives of this family might therefore result in significant changes to the current description.

Keywords

Itaconic Acid Urocanic Acid Succinamic Acid Overlie Seawater Cellular Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Antunes A, Alam I, Bajic VB, Stingl U (2011b) Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake. J Bacteriol 193:4551–4552PubMedCrossRefPubMedCentralGoogle Scholar
  2. Antunes A, Ngugi DK, Stingl U (2011a) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433. doi:10.1111/j.1758-2229.2011.00264.xPubMedCrossRefGoogle Scholar
  3. Antunes A, Rainey F, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled Deep of the Red Sea. J Bacteriol 190:3580–3587PubMedCrossRefPubMedCentralGoogle Scholar
  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedPubMedCentralGoogle Scholar
  5. Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Miner Deposita 26:217–227CrossRefGoogle Scholar
  6. Botz R, Schmidt M, Wehner H, Hufnagel H, Stoffers P (2007) Organic-rich sediments in brine-filled Shaban- and Kebrit Deeps, northern Red Sea. Chem Geol 244:520–553CrossRefGoogle Scholar
  7. Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763PubMedCrossRefGoogle Scholar
  8. Guazzaroni ME, Herbst FA, Lores I, Tamames J, Pelaez AI, Lopez-Cortes N, Alcaide M, Del Pozo MV, Vieites JM, von Bergen M, Gallego JL, Bargiela R, Lopez-Lopez A, Pieper DH, Rossello-Mora R, Sanchez J, Seifert J, Ferrer M (2013) Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J 7:122–136PubMedCrossRefPubMedCentralGoogle Scholar
  9. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776PubMedCrossRefGoogle Scholar
  10. Hartmann M, Scholten JC, Stoffers P, Whener F (1998) Hydrographic structure of brine-filled Deeps in the Red Sea – new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330CrossRefGoogle Scholar
  11. Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111CrossRefGoogle Scholar
  12. Huber R, Wolfgang E, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedPubMedCentralGoogle Scholar
  13. Isenbarger TA, Finney M, Rios-Velazquez C, Handelsman J, Ruvkun G (2008) Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol 74:840–849PubMedCrossRefPubMedCentralGoogle Scholar
  14. Kürner J, Frangakis AS, Baumeister W (2005) Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–438PubMedCrossRefGoogle Scholar
  15. López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274PubMedCrossRefGoogle Scholar
  16. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83PubMedCrossRefGoogle Scholar
  17. Michaelis W, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl Geochem 5:103–114CrossRefGoogle Scholar
  18. Mills HJ, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, Kostka JE (2008) Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl Environ Microbiol 74:4440–4453PubMedCrossRefPubMedCentralGoogle Scholar
  19. Miyake S, Stingl U (2011) Proteorhodopsin. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. http://www.els.net [doi:10.1002/9780470015902.a0022837]Google Scholar
  20. Moissl C, Rachel R, Briegel A, Engelhardt H, Huber R (2005) The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol Microbiol 56:361–370. doi:10.1111/j.1365-2958.2005.04294.xPubMedCrossRefGoogle Scholar
  21. Pautot G, Guennoc P, Coutelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature 310:133–136CrossRefGoogle Scholar
  22. Salzman NH, de Jong H, Paterson Y, Harmsen HJM, Welling GW, Bos NA (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148:3651–3660PubMedGoogle Scholar
  23. Tindall BJ (2007) Vacuum drying and cryopreservation of prokaryotes. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols, 2nd edn. Humana Press, New Jersey, pp 73–97CrossRefGoogle Scholar
  24. Ugalde JA, Podell S, Narasingarao P, Allen EE (2011) Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52PubMedCrossRefPubMedCentralGoogle Scholar
  25. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló- Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.IBB–Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringMicoteca da Universidade do Minho, University of MinhoBragaPortugal
  2. 2.Rianda Research–Centro de Investigação em Energia, Saúde e AmbienteCoimbraPortugal

Personalised recommendations