The Families Erysipelotrichaceae emend., Coprobacillaceae fam. nov., and Turicibacteraceae fam. nov.

  • Susanne Verbarg
  • Markus Göker
  • Carmen Scheuner
  • Peter Schumann
  • Erko Stackebrandt
Reference work entry


The family Erysipelotrichaceae, comprising 10 genera and 12 validly named species, is a family of the order Erysipelotrichales, class Erysipelotrichia within the phylum Firmicutes, remotely related by 16S rRNA gene sequence analysis with some members of Tenericutes (Mollicutes). The phenotype encompasses microaerophilic and anaerobic, spore- and nonsporing organisms, embracing rod-shaped cells to helical and curled rods, appearing singly, in short chains or V-forms. In addition to authentic members of the family, several (misclassified) members of the genera Streptococcus, Eubacterium, and Clostridium are affiliated to the family. Based upon full genome analyses and 16S rRNA gene sequence analyses, the family is polyphyletic and two new families are described on the basis of the 16S rRNA gene tree topology. All members are associated to one or several different hosts, often mammals, but also birds, fish, and marine invertebrates. Besides the obligate pathogen Erysipelothrix rhusiopathiae, causing erysipeloid in humans and erysipelas in swine, most of the other members are found as opportunistic pathogens affecting various parts of the body. Cultivation-based and cultivation-independent studies have revealed their presence in diverse environmental samples but rarely in significant numbers.


Diamino Acid Potassium Tellurite Peptidoglycan Type Numerical Taxonomic Study Isobutyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abt B, Han C, Scheuner C, Lu M, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng J-F, Tapia R, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Huntemann M, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla E-M, Rohde M, Spring S, Gronow S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P, Detter JC (2012) Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. Stand Genomic Sci 6:194–209PubMedPubMedCentralGoogle Scholar
  2. Ahrne S, Stenstrom IM, Jensen NE, Pettersson B, Uhlen M, Molin G (1995) Classification of Erysipelothrix strains on the basis of restriction fragment length polymorphisms. Int J Syst Bacteriol 45:382–385PubMedGoogle Scholar
  3. Anderson IJ, Scheuner C, Göker M, Mavromatis K, Hooper SD, Porat I, Klenk H-P, Ivanova N, Kyrpides NC (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS One 6:e20237PubMedPubMedCentralGoogle Scholar
  4. Bairey MH, Vogel JH (1973) Erysipelas immunizing product review. Proc Annu Meet U S Anim Health Assoc 77:340–344PubMedGoogle Scholar
  5. Barber M (1939) A comparative study of Listeria and Erysipelothrix. J Pathol Bacteriol 48:11–23Google Scholar
  6. Barnes EM, Impey CS, Stevens BJ, Peel JL (1977) Streptococcus pleomorphus sp.nov.: an anaerobic streptococcus isolated mainly from the caeca of birds. J Gen Microbiol 102:45–53PubMedGoogle Scholar
  7. Basu R, Tewari P (2013) Mitral regurgitation jet around neoannulus: mitral valve replacement in Erysipelothrix rhusiopathiae endocarditis. Ann Card Anaesth 16:129–132PubMedGoogle Scholar
  8. Bearson SM, Allen HK, Bearson BL, Looft T, Brunelle BW, Kich JD, Tuggle CK, Bayles DO, Alt D, Levine UY, Stanton TB (2013) Profiling the gastrointestinal microbiota in response to Salmonella: low versus high Salmonella shedding in the natural porcine host. Infect Genet Evol 16C:330–340Google Scholar
  9. Bender JS, Shen HG, Irwin CK, Schwartz KJ, Opriessnig T (2010) Characterization of Erysipelothrix species isolates from clinically affected pigs. Clin Vaccine Immunol 17:1605–1611PubMedPubMedCentralGoogle Scholar
  10. Benno Y, Suzuki K, Suzuki K, Narisawa K, Bruce WR, Mitsuoka T (1986) Comparison of the fecal microflora in rural Japanese and urban Canadians. Microbiol Immunol 30:521–532PubMedGoogle Scholar
  11. Bernath S, Kucsera G, Kadar I, Horvath G, Morovjan G (1997) Comparison of the protein patterns of Erysipelothrix rhusiopathiae strains by SDS-PAGE and autoradiography. Acta Vet Hung 45:417–425PubMedGoogle Scholar
  12. Bernath S, Nemet L, Toth K, Morovjan G (2001) Computerized comparison of the protein compositions of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum strains. J Vet Med B Infect Dis Vet Public Health 48:73–79PubMedGoogle Scholar
  13. Bibiloni R, Simon MA, Albright C, Sartor B, Tannock GW (2005) Analysis of the large bowel microbiota of colitic mice using PCR/DGGE. Lett Appl Microbiol 41:45–51PubMedGoogle Scholar
  14. Boerner L, Nevis KR, Hinckley LS, Weber ES, Frasca S Jr (2004) Erysipelothrix septicemia in a little blue penguin (Eudyptula minor). J Vet Diagn Invest 16:145–149Google Scholar
  15. Bolivar I, Whiteson K, Stadelmann B, Baratti-Mayer D, Gizard Y, Mombelli A, Pittet D, Schrenzel J, Consortium: The Geneva Study Group on Noma (GESNOMA) (2012) Bacterial diversity in oral samples of children in Niger with acute Noma, acute necrotizing gingivitis, and healthy controls. PLoS Negl Trop Dis 6:E1556PubMedPubMedCentralGoogle Scholar
  16. Booth V, Downes J, Van den Berg J, Wade WG (2004) Gram-positive anaerobic bacilli in human periodontal disease. J Periodontal Res 39:213–220PubMedGoogle Scholar
  17. Borriello SP (1995) Clostridial disease of the gut. Clin Infect Dis 20(Suppl 2):S242–S250PubMedGoogle Scholar
  18. Bosshard PP, Zbinden R, Altwegg M (2002) Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol 52:1263–1266PubMedGoogle Scholar
  19. Boureau H, Decré D, Carlier JP, Guichet C, Bourlioux P (1993) Identification of a Clostridium cocleatum strain involved in an anti-Clostridium difficile barrier effect and determination of its mucin-degrading enzymes. Res Microbiol 144:405–410PubMedGoogle Scholar
  20. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 79:3906PubMedPubMedCentralGoogle Scholar
  21. Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria. V. Subgroups and genera of the Bacteriaceae. J Bacteriol 3:27–61PubMedPubMedCentralGoogle Scholar
  22. Buzoianu SG, Walsh MC, Rea MC, O’Sullivan O, Crispie F, Cotter PD, Ross RP, Gardiner GE, Lawlor PG (2012) The effect of feeding Bt MON810 maize to pigs for 110 days on intestinal microbiota. PLoS One 7:e33668PubMedPubMedCentralGoogle Scholar
  23. Cato EP, Salmon CNW, Holdeman LV (1974) Eubacterium cylindroides (Rocchi) Holdeman and Moore: emended description and designation of neotype strain. Int J Syst Bacteriol 24:256–259Google Scholar
  24. Child MW, Kennedy A, Walker AW, Bahrami B, Macfarlane S, Macfarlane GT (2006) Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS Microbiol Ecol 55:299–310PubMedGoogle Scholar
  25. Chooromoney KN, Hampson DJ, Eamens GJ, Turner MJ (1994) Analysis of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum by multilocus enzyme electrophoresi.. J Clin Microbiol 32:371–376PubMedPubMedCentralGoogle Scholar
  26. Clavel T, Lippman R, Gavini F, Doré J, Blaut M (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26PubMedGoogle Scholar
  27. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedGoogle Scholar
  28. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ (2009) Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 80:1421–1432PubMedPubMedCentralGoogle Scholar
  29. Cordero A, García M, Herradora M, Ramírez G, Martínez R (2010) Bacteriological characterization of wastewater samples obtained from a primary treatment system on a small scale swine farm. Bioresour Technol 101:2938–2944PubMedGoogle Scholar
  30. Cormican MG, Jones RN (1995) Antimicrobial activity of cefotaxime tested against infrequently isolated pathogenic species (unusual pathogens). Diagn Microbiol Infect Dis 22:43–48PubMedGoogle Scholar
  31. Cousquer G (2005) Erysipelas outbreak in racing pigeons following ingestion of compost. Vet Rec 156:656PubMedGoogle Scholar
  32. Coutinho TA, Imada Y, de Barcellos DE, de Oliveira SJ, Moreno AM (2011) Genotyping of Brazilian Erysipelothrix spp. strains by amplified fragment length polymorphism. J Microbiol Methods 84:27–32PubMedGoogle Scholar
  33. Dacres WG, Groth AH Jr (1959) Identification of Erysipelothrix insidiosa with fluorescent antibody. J Bacteriol 78:298–299PubMedPubMedCentralGoogle Scholar
  34. Davis GHG, Newton KG (1969) Numerical taxonomy of some named coryneform bacteria. J Gen Microbiol 56:195–214PubMedGoogle Scholar
  35. Davis JJ, Xia F, Overbeek RA, Olsen GJ (2013) The genomes of the Erysipelotrichia clarify the firmicute origin of the Mollicutes. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.048983-0PubMedCentralGoogle Scholar
  36. Debono M (1912) On some anaerobical bacteria of the normal human intestine. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I 62:229–234Google Scholar
  37. Detry G, Pierard D, Vandoorslaer K, Wauters G, Avesani V, Glupczynski Y (2006) Septicemia due to Solobacterium moorei in a patient with multiple myeloma. Anaerobe 123:160–162Google Scholar
  38. DiGiulio DB, Romero R, Kusanovic JP, Gómez R, Kim CJ, Seok KS, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Sanders K, Bik EM, Chaiworapongsa T, Oyarzún E, Relman DA (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 641:38–57Google Scholar
  39. Downes J, Olsvik B, Hiom SJ, Spratt DA, Cheeseman SL, Olsen I, Weightman AJ, Wade WG (2000) Bulleidia extructa gen. nov., sp. nov., isolated from the oral cavity. Int J Syst Bacteriol 50:979–983Google Scholar
  40. Downes J, Munson MA, Spratt DA, Kononen E, Tarkka E, Jousimies-Somer H, Wade WG (2001) Characterisation of Eubacterium-like strains isolated from oral infections. J Med Microbiol 50:947–951PubMedGoogle Scholar
  41. Duncan SH, Scott KP, Ramsay AG, Harmsen HJ, Welling GW, Stewart CS, Flint HJ (2003) Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69:1136–1142PubMedPubMedCentralGoogle Scholar
  42. Eriksson H, Jansson DS, Johansson KE, Baverud V, Chirico J, Aspan A (2009) Characterization of Erysipelothrix rhusiopathiae isolates from poultry, pigs, emus, the poultry red mite and other animals. Vet Microbiol 137:98–104PubMedGoogle Scholar
  43. Eriksson H, Nyman AK, Fellström C, Wallgren P (2013) Erysipelas in laying hens is associated with housing system. Vet Rec 173:18PubMedGoogle Scholar
  44. Erler W (1972) Serologisch, chemische und immunochemische Untersuchungen an Rotlaufbakterien. X. Die Differenzierung der Rotlaufbakterien nach chemischen Merkmalen. Arch Exp Veterinarmed 26:809–816PubMedGoogle Scholar
  45. Ewald FW (1957) Das Hyaluronidase-Bildungsvermögen von Rotlaufbakterien. Monatsh Tierheilk 9:333–341Google Scholar
  46. Ewald FW (1981) The genus Erysipelothrix. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, New York, pp 1688–1700Google Scholar
  47. Farfour E, Leto J, Barritault M, Barberis C, Meyer J, Dauphin B et al (2012) Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. J Clin Microbiol 50:2702–2707PubMedPubMedCentralGoogle Scholar
  48. Feist H (1972) Serologische, chemische und immunchemische Untersuchungen an Rotlaufbakterien. XII. Das Murein der Rotlaufbakterien. Arch Exp Veterinarmed 26:825–834PubMedGoogle Scholar
  49. Feltham RKA, Power AK, Pell PA, Sneath PHA (1978) A simple method for storage of bacteria at −76°C. J Appl Bacteriol 44:313–316PubMedGoogle Scholar
  50. Feresu SB, Jones D (1988) Taxonomic studies on Brochothrix, Erysipelothrix, Listeria and atypical lactobacilli. J Gen Microbiol 134:1165–1183PubMedGoogle Scholar
  51. Ferreira CE, Nakano V, Avila-Campos MJ (2004) Cytotoxicity and antimicrobial susceptibility of Clostridium difficile isolated from hospitalized children with acute diarrhea. Anaerobe 10:171–177PubMedGoogle Scholar
  52. Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A et al (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226PubMedGoogle Scholar
  53. Fidalgo SG, Riley TV (2004) Detection of Erysipelothrix rhusiopathiae in clinical and environmental samples. Methods Mol Biol 268:199–205PubMedGoogle Scholar
  54. Fidalgo SG, Wang Q, Riley TV (2000) Comparison of methods for detection of Erysipelothrix spp. and their distribution in some Australasian seafoods. Appl Environ Microbiol 66:2066–2070PubMedPubMedCentralGoogle Scholar
  55. Finkelstein R, Oren I (2011) Soft tissue infections caused by marine bacterial pathogens: epidemiology, diagnosis, and management. Curr Infect Dis Rep 13:470–477PubMedGoogle Scholar
  56. Flanagan JL, Brodie EL, Weng L, Lynch SV, Garcia O et al (2007) Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J Clin Microbiol 45:1954–1962PubMedPubMedCentralGoogle Scholar
  57. Flossmann KD, Erler W (1972) Serologische, chemische und immunchemische Untersuchungen an Rothufbakterien. XI. Isolierung und Charakterisierung von Desoxyribonukleinsäuren aus Rotlaufbakterien. Arch Exp Veterinarmed 26:817–824Google Scholar
  58. Foster JD, Hartmann FA, Moriello KA (2012) A case of apparent canine erysipeloid associated with Erysipelothrix rhusiopathiae bacteraemia. Vet Dermatol 23:528-e108PubMedGoogle Scholar
  59. Füzi M (1963) A neomycin sensitivity test for the rapid differentiation of Listeria monocytogenes and Erysipelothrix rhusiopathiae. J Pathol Bacteriol 85:524–525PubMedGoogle Scholar
  60. Giménez-Lirola LG, Xiao CT, Halbur PG, Opriessnig T (2012) Development and evaluation of an enzyme-linked immunosorbent assay based on a recombinant SpaA protein (rSpaA415) for detection of anti- Erysipelothrix spp. IgG antibodies in pigs. J Microbiol Methods 91:191–197PubMedGoogle Scholar
  61. Goh SH, Mabbett AN, Welch JP, Hall SJ, McEwan AG (2009) Molecular ecology of a facultative swine waste lagoon. Lett Appl Microbiol 48:486–492PubMedGoogle Scholar
  62. Göker M, Scheuner C, Klenk H-P, Stielow JB, Menzel W (2011) Codivergence of mycoviruses with their hosts. PLoS One 6:e22252PubMedPubMedCentralGoogle Scholar
  63. Goldstein EJ, Citron DM, Merriam CV, Abramson MA (2009) Infection after elective colorectal surgery: bacteriological analysis of failures in a randomized trial of cefotetan vs. ertapenem prophylaxis. Surg Infect (Larchmt) 10:111–118Google Scholar
  64. Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B, Steiner U, Falsen E, Collins MD (2004) Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 10:301–307PubMedGoogle Scholar
  65. Grieco MH, Sheldon C (1970) Erysipelothrix rhusiopathiae. Ann N Y Acad Sci 174:523–532PubMedGoogle Scholar
  66. Hafner S, Harmon BG, Thayer SG, Hall SM (1994) Splenic granulomas in broiler chickens produced experimentally by inoculation with Eubacterium tortuosum. Avian Dis 38:605–609PubMedGoogle Scholar
  67. Hammann R, Werner H (1981) Presence of diaminopimelic acid in propionate-negative Bacteroides species and in some butyric acid-producing strains. J Med Microbiol 14:205–212PubMedGoogle Scholar
  68. Haraszthy VI, Gerber D, Clark B, Moses P, Parker C, Sreenivasan PK, Zambon JJ (2008) Characterization and prevalence of Solobacterium moorei associated with oral halitosis. J Breath Res 21:017002Google Scholar
  69. Harrington R Jr, Hulse DC (1971) Comparison of two plating media for the isolation of Erysipelothrix rhusiopathiae from enrichment broth culture. Appl Microbiol 22:141–142Google Scholar
  70. Harrington R Jr, Wood RL, Hulse DC (1974) Comparison of a fluorescent antibody technique and cultural method for the detection of Erysipelothrix rhusiopathiae in primary broth cultures. Am J Vet Res 35:461–462Google Scholar
  71. Hassanein R, Sawada T, Kataoka Y, Itoh K, Suzuki Y (2001) Serovars of Erysipelothrix species isolated from the tonsils of healthy cattle in Japan. Vet Microbiol 82:97–100PubMedGoogle Scholar
  72. Hassanein R, Sawada T, Kataoka Y, Gadallah A, Suzuki Y (2003) Molecular identification of Erysipelothrix isolates from the tonsils of healthy cattle by PCR. Vet Microbiol 95:239–245PubMedGoogle Scholar
  73. Holdeman LV, Cato EP, Moore WEC (1971) Clostridium ramosum (Vuillemin) comb. nov.: emended description and proposed neotype strain. Int J Syst Bacteriol 21:35–39Google Scholar
  74. Hong PY, Yannarell AC, Dai Q, Ekizoglu M, Mackie RI (2013) Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol 79:2620–2629PubMedPubMedCentralGoogle Scholar
  75. Imada Y, Takase A, Kikuma R, Iwamaru Y, Akachi S, Hayakawa Y (2004) Serotyping of 800 strains of Erysipelothrix isolated from pigs affected with erysipelas and discrimination of attenuated live vaccine strain by genotyping. J Clin Microbiol 42:2121–2126PubMedPubMedCentralGoogle Scholar
  76. Ingebritson AL, Roth JA, Hauer PJ (2010) Erysipelothrix rhusiopathiae: association of Spa-type with serotype and role in protective immunity. Vaccine 28:2490–2496PubMedGoogle Scholar
  77. Jensen HE, Gyllensten J, Hofman C, Leifsson PS, Agerholm JS, Boye M, Aalbæk B (2010) Histologic and bacteriologic findings in valvular endocarditis of slaughter-age pigs. J Vet Diagn Invest 22:921–927PubMedGoogle Scholar
  78. Ji X, Pushalkar S, Li Y, Glickman R, Fleisher K, Saxena D (2012) Antibiotic effects on bacterial profile in osteonecrosis of the jaw. Oral Dis 18:85–95PubMedPubMedCentralGoogle Scholar
  79. Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J Gen Microbiol 87:52–96PubMedGoogle Scholar
  80. Jones D (1986) Genus Erysipelothrix Rosenbach 367al. In: Sneath PH, Mair NS, Sharpe ME (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1245–1249Google Scholar
  81. Julak J, Ryska M, Koruna I, Mencikova E (1989) Cellular fatty acids and fatty aldehydes of Listeria and Erysipelothrix. Zentralbl Bakteriol 272:171–180PubMedGoogle Scholar
  82. Kageyama A, Benno Y (2000a) Coprobacillus catenaformis gen. nov., sp. nov., a new genus and species isolated from human feces. Microbiol Immunol 44:23–28PubMedGoogle Scholar
  83. Kageyama A, Benno Y (2000b) Catenibacterium mitsuokai gen. nov., sp. nov., a Gram-positive anaerobic bacterium isolated from human faeces. Int J Syst Evol Microbiol 50:1595–1599PubMedGoogle Scholar
  84. Kageyama A, Benno Y (2000c) Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei gen. nov., sp. nov. Microbiol Immunol 44:223–227PubMedGoogle Scholar
  85. Kalmokoff M, Waddington LM, Thomas M, Liang KL, Ma C, Topp E, Dandurand UD, Letellier A, Matias F, Brooks SP (2011) Continuous feeding of antimicrobial growth promoters to commercial swine during the growing/finishing phase does not modify faecal community erythromycin resistance or community structure. J Appl Microbiol 110:1414–1425PubMedGoogle Scholar
  86. Kaneuchi C, Mizayato T, Shinjo T, Mitsuoka T (1979) Taxonomic study of helically coiled, sporeforming anaerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov. Int J Syst Bacteriol 29:1–12Google Scholar
  87. Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33PubMedGoogle Scholar
  88. Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41:558–563PubMedPubMedCentralGoogle Scholar
  89. Khan AA, Nawaz MS, Robertson L, Khan SA, Cerniglia CE (2001) Identification of predominant human and animal anaerobic intestinal bacterial species by terminal restriction fragment patterns (TRFPs): a rapid, PCR-based method. Mol Cell Probes 15:349–355PubMedGoogle Scholar
  90. Kisidayová S, Váradyová Z, Pristas P, Piknová M, Nigutová K, Petrzelková KJ, Profousová I, Schovancová K, Kamler J, Modrý D (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 71:548–557PubMedGoogle Scholar
  91. Kiuchi A, Hara M, Pham HS, Takikawa K, Tabuchi K (2000) Phylogenetic analysis of the Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum based upon 16S rRNA. DNA Seq 11:257–260PubMedGoogle Scholar
  92. Koch R (1878) Untersuchungen über die Atiologie der Wundinfektionskrankheiten. Vogel, LeipzigGoogle Scholar
  93. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA (2012) Consortium: comparative sequence program. 2012. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859PubMedPubMedCentralGoogle Scholar
  94. Koyanagi T, Sakamoto M, Takeuchi Y, Ohkuma M, Izumi Y (2010) Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. J Oral Microbiol 24:2Google Scholar
  95. Krasemann C, Müller HE (1975) Die Virulenz von Erysipelothrix-rhusiopathiae-Stämmen und Neuraminidase-Produktion. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 23:1206–1213Google Scholar
  96. Langford GC, Hansen PA (1953) Erysipelothrix insidiosa. Riass Commun VI Congr Int Microbiol Roma 1:18Google Scholar
  97. Langford GC, Hansen PA (1954) The species of Erysipelothrix. Antonie Van Leeuwenhoek J Microbiol Serol 20:87–92Google Scholar
  98. Lau SK, Teng JL, Leung KW, Li NK, Ng KH, Chau KY, Que TL, Woo PC, Yuen KY (2006) Bacteremia caused by Solobacterium moorei in a patient with acute proctitis and carcinoma of the cervix. J Clin Microbiol 44:3031–3034PubMedPubMedCentralGoogle Scholar
  99. Lavigne JP, Bouziges N, Sotto A, Leroux JL, Michaux-Charachon S (2003) Spondylodiscitis due to Clostridium ramosum infection in an immunocompetent elderly patient. J Clin Microbiol 41:2223–2226PubMedPubMedCentralGoogle Scholar
  100. Lee WK, Fujisawa T, Kawamura S, Itoh K, Mitsuoka T (1991) Isolation and identification of clostridia from the intestine of laboratory animals. Lab Anim 25:9–15PubMedGoogle Scholar
  101. Li M, Wang B, Zhang M, Rantalainen M, Wang S et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105:2117–2122PubMedPubMedCentralGoogle Scholar
  102. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H et al (2012) Inflammatory bowel diseases phenotype, C. difficile and NOD2. Genotype are associated with shifts in human ileum associated microbial composition. PLoS One 7(6), E26284PubMedPubMedCentralGoogle Scholar
  103. Loeffler FA (1886) Experimentelle Untersuchungen über Schweinerotlauf. Arb Kais Gesundheitsamt 1:46–55Google Scholar
  104. Ludwig W, Schleifer KH, Whitman WB (2009a) Order I. Erysipelothrichales. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1298Google Scholar
  105. Ludwig W, Schleifer KH, Whitman WB (2009b) Class III. Erysipelotrichia. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1298Google Scholar
  106. Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1–28Google Scholar
  107. Lyra A, Rinttilä T, Nikkilä J, Krogius-Kurikka L, Kajander K, Malinen E, Mättö J, Mäkelä L, Palva A (2009) Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol 15:5936–5945PubMedPubMedCentralGoogle Scholar
  108. Makino S-I, Okada Y, Maruyama T, Ishikawa K, Takahashi T, Nakamura M, Ezaki T, Morita H (1994) Direct and rapid detection of Erysipelothrix rhusiopathiae DNA in animals by PCR. J Clin Microbiol 32:1526–1531PubMedPubMedCentralGoogle Scholar
  109. Mann S (1969) Über die Zellwandbausteine von Listeria monocytogenes und Erysipelothrix rhusiopathiae. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 209:510–518Google Scholar
  110. Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237PubMedPubMedCentralGoogle Scholar
  111. Martin CA, Wijesurendra RS, Borland CD, Karas JA (2007) Femoral vein thrombophlebitis and septic pulmonary embolism due to a mixed anaerobic infection including Solobacterium moorei: a case report. J Med Case Rep 1:40PubMedPubMedCentralGoogle Scholar
  112. Migula W (1900) System der Bakterien. Handbuch der Morphologie, Entwicklungsgeschichte und Systematik der Bacterien. G. Fischer Verlag, JenaGoogle Scholar
  113. Moissl C, Osman S, La Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521PubMedGoogle Scholar
  114. Moore WEC, Johnson JL, Holdeman LV (1976) Emendation of Bacteriodaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 26:238–252Google Scholar
  115. Morita H, Shiratori C, Murakami M, Takami H, Toh H, Kato Y, Nakajima F, Takagi M, Akita H, Masaoka T, Hattori M (2008) Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic bacterium isolated from the faeces of thoroughbred horses. Int J Syst Evol Microbiol 58:2682–2686PubMedGoogle Scholar
  116. Mukhopadhyay C, Shah H, Vandana K, Munim F, Vijayan SA (2012) A child with Erysipelothrix arthritis-beware of the little known. Asian Pac J Trop Biomed 2:503–504PubMedPubMedCentralGoogle Scholar
  117. Müller HE, Krasemann C (1976) Immunität gegen Erysipelothrix rhusiopathiae- Infektion durch aktive Immunizierung mit homologer Neuraminidase. Z Immunitätsforsch 151:237–241Google Scholar
  118. Müller HE, Seidler D (1975) Über das Vorkommen Neuraminidase-neutralizierender Antikörper bei chronisch rotlaufkranken Schweinen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 230:51–58Google Scholar
  119. Nakazawa H, Hayashidani H, Higashi J, Kaneko K, Takahashi T, Ogawa M (1998) Occurrence of Erysipelothrix spp. in broiler chickens at an abattoir. J Food Prot 61:907–909PubMedGoogle Scholar
  120. Nanda N, Voskuhl GW (2006) Lung abscess caused by Clostridium ramosum. J Okla State Med Assoc 99:158–160PubMedGoogle Scholar
  121. Neumann EJ, Grinberg A, Bonistalli KN, Mack HJ, Lehrbach PR, Gibson N (2009) Safety of a live attenuated Erysipelothrix rhusiopathiae vaccine for swine. Vet Microbiol 135:297–303PubMedGoogle Scholar
  122. Nikolov P, Abrashev I (1976) Comparative studies of the neuraminidase activity of Erysipelothrix insidiosa. Activity of virulent strains and avirulent variants of Erysipelothrix insidiosa. Acta Microbiol Virol Immunol (Sofia) 3:28–31Google Scholar
  123. Noguchi N, Sasatsu M, Takahashi T, Ohmae K, Terakado N, Kono M (1993) Detection of plasmid DNA in Erysipelothrix rhusiopathiae isolated from pigs with chronic swine erysipelas. J Vet Med Sci 55:349–350PubMedGoogle Scholar
  124. Ogawa Y, Oishi E, Muneta Y, Sano A, Hikono H, Shibahara T, Yagi Y, Shimoji Y (2009) Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector. Vaccine 27:4543–4550PubMedGoogle Scholar
  125. Okatani AT, Hayashidani TH, Takahashi T, Taniguchi T, Ogawa M, Kaneko K-I (2000) Randomly amplified polymorphic DNA analysis of Erysipelothrix spp. J Clin Microbiol 38:4332–4336PubMedPubMedCentralGoogle Scholar
  126. Okatani AT, Uto T, Taniguchi T, Horisaka T, Horikita T, Kaneko K-I, Hayashidani H (2001) Pulsed-field gel electrophoresis in differentiation of Erysipelothrix species strains. J Clin Microbiol 39:4032–4036PubMedPubMedCentralGoogle Scholar
  127. Okatani TA, Ishikawa M, Yoshida S, Sekiguchi M, Tanno K, Ogawa M, Horikita T, Horisaka T, Taniguchi T, Kato Y, Hayashidani H (2004) Automated ribotyping: a rapid typing method for analysis of Erysipelothrix spp. strains. J Vet Med Sci 66:729–733PubMedGoogle Scholar
  128. Opriessnig T, Hoffmann LJ, Harris DL, Gaul SB, Halbur PG (2004) Erysipelothrix rhusiopathiae: genetic characterization of midwest US isolates and live commercial vaccines using pulsed-field gel electrophoresis. J Vet Diagn Invest 16:101–107PubMedGoogle Scholar
  129. Opriessnig T, Shen HG, Bender JS, Boehm JR, Halbur PG (2013) Erysipelothrix rhusiopathiae isolates recovered from fish, a Harbour Seal (Phoca vitulina) and the marine environment are capable of inducing characteristic cutaneous lesions in pigs. J Comp Pathol 148:365–372PubMedGoogle Scholar
  130. Osaki T, Matsuki T, Asahara T, Zaman C, Hanawa T, Yonezawa H, Kurata S, Woo TD, Nomoto K, Kamiya S (2012) Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog 53:12–18PubMedGoogle Scholar
  131. Ozawa M, Yamamoto K, Kojima A, Takagi M, Takahashi T (2009) Etiological and biological characteristics of Erysipelothrix rhusiopathiae isolated between 1994 and 2001 from pigs with swine erysipelas in Japan. J Vet Med Sci 7:697–702Google Scholar
  132. Packer RA (1943) The use of sodium azide and crystal violet in a selective medium for Erysipelothrix rhusiopathiae and streptococci. J Bacteriol 46:343–349PubMedPubMedCentralGoogle Scholar
  133. Park HY, Kim M, Han J (2011) Stereospecific microbial production of isoflavanones from isoflavones and isoflavone glucosides. Appl Microbiol Biotechnol 91:1173–1181PubMedGoogle Scholar
  134. Paster BJ, Russell MK, Alpagot T, Lee AM, Boches SK, Galvin JL, Dewhirst FE (2002) Bacterial diversity in necrotizing ulcerative periodontitis in HIV-positive subjects. Ann Periodontol 71:8–16Google Scholar
  135. Pasteur L, Dumas M (1882) Sur le rouget, ou mal rouge des porcs. Extrait d’une Lettre. C R Hebd Seances Acad Sci Paris 95:1120–1121Google Scholar
  136. Pedersen RM, Holt HM, Justesen US (2011) Solobacterium moorei bacteremia: identification, antimicrobial susceptibility, and clinical characteristics. J Clin Microbiol 49:2766–2768PubMedPubMedCentralGoogle Scholar
  137. Peltier J, Courtin P, El Meouche I, Lemée L, Chapot-Chartier MP, Pons JL (2011) Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J Biol Chem 286:29053–29062PubMedPubMedCentralGoogle Scholar
  138. Pleszczynska E (1972) Comparative studies on Listeria and Erysipelothrix. I. Analysis of whole antigens. II. Analysis of antigen fractions. Pol Arch Weter 15:463–471PubMedGoogle Scholar
  139. Rainey FA, Hollen BJ, Small A (2009) Genus I. Clostridium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology. pp 738–828Google Scholar
  140. Reboli AC, Farrar WE (1989) Erysipelothrix rhusiopathiae: an occupational pathogen. Clin Microbiol Rev 2:354–359PubMedPubMedCentralGoogle Scholar
  141. Reboli AC, Farrar WE (1991) The genus Erysipelothrix. In: Balows A, Trüper HG, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, New York, pp 1629–1642, 1992Google Scholar
  142. Rettedal E, Vilain S, Lindblom S, Lehnert K, Scofield C, George S, Clay S, Kaushik RS, Rosa AJ, Francis D, Brözel VS (2009) Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline. Appl Environ Microbiol 75:5489–5495PubMedPubMedCentralGoogle Scholar
  143. Rintala H, Pitkaranta M, Toivola M, Paulin L, Nevalainen A (2008) Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol 8:56PubMedPubMedCentralGoogle Scholar
  144. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341PubMedGoogle Scholar
  145. Rolph HJ, Lennon A, Riggio MP, Saunders WP, MacKenzie D, Coldero L, Bagg J (2001) Molecular identification of microorganisms from endodontic infections. J Clin Microbiol 39:3282–3289PubMedPubMedCentralGoogle Scholar
  146. Romney M, Cheung S, Montessori V (2001) Erysipelothrix rhusiopathiae endocarditis and presumed osteomyelitis. Can J Infect Dis 12:254–256PubMedPubMedCentralGoogle Scholar
  147. Rosenbach FJ (1909) Experimentelle, morphologische und klinische Studien über krankheitserregende Mikroorganismen des Schweinerotlaufs, des Erysipeloids und der Mausesepticamie. Z Hyg Infekt 63:343–371Google Scholar
  148. Salvetti E, Felis GE, Dellaglio F, Castioni A, Torriai S, Lawson PA (2011) Reclassification of Lactobacillus catenaformis Eggerth 1935 Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al. 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 61:2520–2524PubMedGoogle Scholar
  149. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6Google Scholar
  150. Schirrmeister JF, Liebenow AL, Pelz K, Wittmer A, Serr A, Hellwig E, Al-Ahmad A (2009) New bacterial compositions in root-filled teeth with periradicular lesions. J Endod 35:169–174PubMedGoogle Scholar
  151. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  152. Schubert K, Fiedler F (2001) Structural investigations on the cell surface of Erysipelothrix rhusiopathiae. Syst Appl Microbiol 24:26–30PubMedGoogle Scholar
  153. Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129Google Scholar
  154. Seidler D, Trautwein G, Bohm KH (1971) Nachweis von Erysipelothrix insidiosa mit fluoreszierenden Antikörpern. Zentralbl Veterinarmed B 18:280–292PubMedGoogle Scholar
  155. Shaddox LM, Huang H, Lin T, Hou W, Harrison PL, Aukhil I, Walker CB, Klepac-Ceraj V, Paster BJ (2012) Microbiological characterization in children with aggressive periodontitis. J Dent Res 91:927–933PubMedPubMedCentralGoogle Scholar
  156. Shen HG, Bender JS, Opriessnig T (2010) Identification of the surface protective antigen (spa) types in Erysipelothrix spp. reference strains and diagnostic samples by spa multiplex real-time and conventional PCR assays. J Appl Microbiol 109:1227–1233PubMedGoogle Scholar
  157. Shimoji Y (2000) Pathogenicity of Erysipelothrix rhusiopathiae: virulence factors and protective immunity. Microbes Infect 2:965–972PubMedGoogle Scholar
  158. Shimoji Y, Oishi E, Kitajima T, Muneta Y, Shimizu S, Mori Y (2002) Erysipelothrix rhusiopathiae YS-1 as a live vaccine vehicle for heterologous protein expression and intranasal immunization of pigs. Infect Immun 70:226–232PubMedPubMedCentralGoogle Scholar
  159. Sinclair M, Hawkins A, Testro A (2013) Something fishy: an unusual Erysipelothrix rhusiopathiae infection in an immunocompromised individual. BMJ Case Rep. doi: 10.1136/bcr-2013-008873Google Scholar
  160. Smith LDS, King E (1962) Clostridium innocuum, sp. n., a spore-forming anaerobe isolated from human infections. J Bacteriol 83:938–939PubMedPubMedCentralGoogle Scholar
  161. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedPubMedCentralGoogle Scholar
  162. Sneath PHA, Abbott JD, Cunliffe AC (1951) The bacteriology of erysipeloid. Br Med J 2:1063–1066PubMedPubMedCentralGoogle Scholar
  163. Spring S, Scheuner C, Lapidus A, Lucas S, Del Rio TG, Tice H, Copeland A, Cheng J-F, Chen F, Nolan M, Saunders E, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Lykidis A, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Goodwin L, Detter JC, Brettin T, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P (2010) The genome sequence of Methanohalophilus mahii SLPT reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. Archaea 2010:690737PubMedPubMedCentralGoogle Scholar
  164. Stackebrandt E (2009a) Genus I. Erysipelothrix. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 1299–1306Google Scholar
  165. Stackebrandt E (2009b) Family I. Erysipelothricaceae. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1299Google Scholar
  166. Stackebrandt E, Reboli AC, Farrar WE (2005) The Genus Erysipelothrix. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York (electronic, release 3.1)Google Scholar
  167. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  168. Stiverson J, Morrison M, Yu Z (2011) Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int J Microbiol 2011:750613PubMedPubMedCentralGoogle Scholar
  169. Stuart MR, Pease PE (1972) A numerical study on the relationships of Listeria and Erysipelothrix. J Gen Microbiol 73:551–565PubMedGoogle Scholar
  170. Stuart SE, Welshimer HJ (1974) Taxonomic re-examination of Listeria Pirie and transfer of Listeria grayi and Listeria murrayi to a new genus Murraya. Int J Syst Bacteriol 24:177–185Google Scholar
  171. Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, Kachroo P, Ivanov I, Minamoto Y, Dillman EM, Steiner JM, Cook AK, Toresson L (2012) The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One 7:e51907PubMedPubMedCentralGoogle Scholar
  172. Tachon S, Zhou J, Keenan M, Martin R, Marco ML (2013) The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiol Ecol 83:299–309PubMedGoogle Scholar
  173. Tadayon RA, Carroll KK (1971) Effect of growth conditions on the fatty acid composition of Listeria monocytogenes and comparison with the fatty acids of Erysipelothrix and Corynebacterium. Lipids 6:820–825PubMedGoogle Scholar
  174. Tadayon RA, Cheema AH, Muhammed SI (1980) Microorganisms associated with abscesses of sheep and goats in the south of Iran. Am J Vet Res 41:798–802PubMedGoogle Scholar
  175. Takahashi T, Fujisawa T, Benno Y, Tamura Y, Sawada T, Suzuki S, Muramatsu M, Mitsuoka T (1987) Erysipelothrix tonsillarum sp. nov., isolated from tonsils of apparently healthy pigs. Int J Syst Bacteriol 37:166–168Google Scholar
  176. Takahashi T, Tamura Y, Sawada T, Suzuki S, Muramatsu M, Fujisawa T, Benno Y, Mitsuoka T (1989) Enzymatic profiles of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillae. Res Vet Sci 47:275–276PubMedGoogle Scholar
  177. Takahashi T, Fujisawa T, Tamura Y, Suzuki S, Muramatsu M, Sawada T, Benno Y, Mitsuoka T (1992) DNA relatedness among Erysipelothrix rhusiopathiae strains representing all twenty-three serovars and Erysipelothrix tonsillarum. Int J Syst Bacteriol 42:469–473PubMedGoogle Scholar
  178. Takahashi T, Tamura Y, Endo YS, Hara N (1994) Cellular fatty acid composition of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum. J Vet Med Sci 56:385–387PubMedGoogle Scholar
  179. Takahashi T, Fujisawa T, Yamamoto K, Kijima M, Takahashi T (2000) Taxonomic evidence that serovar 7 of Erysipelothrix strains isolated from dogs with endocarditis are Erysipelothrix tonsillarum. J Vet Med B Infect Dis Vet Public Health 47:311–313PubMedGoogle Scholar
  180. Takahashi T, Fujisawa T, Umeno A, Kozasa T, Yamamoto K, Sawada T (2008) A taxonomic study on Erysipelothrix by DNA-DNA hybridization experiments with numerous strains isolated from extensive origins. Microbiol Immunol 52:469–478PubMedGoogle Scholar
  181. Takeshi K, Makino S, Ikeda T, Takada N, Nakashiro A, Nakanishi K, Oguma K, Katoh Y, Sunagawa H, Ohyama T (1999) Direct and rapid detection by PCR of Erysipelothrix sp. DNAs prepared from bacterial strains and animal tissues. J Clin Microbiol 37:4093–4098PubMedPubMedCentralGoogle Scholar
  182. Tamura Y, Takahashi T, Zarkasie K, Nakamura M, Yoshimura H (1993) Differentiation of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell proteins. Int J Syst Bacteriol 43:111–114PubMedGoogle Scholar
  183. Tamura M, Tsushida T, Shinohara K (2007) Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe 13:32–35PubMedGoogle Scholar
  184. Tanabe S, Grenier D (2012) Characterization of volatile sulfur compound production by Solobacterium moorei. Arch Oral Biol 57:1639–1643PubMedGoogle Scholar
  185. Tlougan BE, Podjasek JO, Adams BB (2010) Aquatic sports dermatoses: part 3. On the water. Int J Dermatol 49:1111–1120PubMedGoogle Scholar
  186. To H, Nagai S (2007) Genetic and antigenic diversity of the surface protective antigen proteins of Erysipelothrix rhusiopathiae. Clin Vaccine Immunol 14:813–820PubMedPubMedCentralGoogle Scholar
  187. To H, Koyama T, Nagai S, Tuchiya K, Nunoya T (2009) Development of quantitative real-time polymerase chain reaction for detection of and discrimination between Erysipelothrix rhusiopathiae and other Erysipelothrix species. J Vet Diagn Invest 21:701–706PubMedGoogle Scholar
  188. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL, Márialigeti K (2008) Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–981PubMedGoogle Scholar
  189. Traer EA, Williams MR, Keenan JN (2008) Erysipelothrix rhusiopathiae infection of a total knee arthroplasty an occupational hazard. J Arthroplasty 23:609–611PubMedGoogle Scholar
  190. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedPubMedCentralGoogle Scholar
  191. Validation List N 74 (2000) Int J Syst Evol Microbiol 50:949–950Google Scholar
  192. Validation List N 75 (2000) Int J Syst Evol Microbiol 50:1415–1417Google Scholar
  193. Validation List N 110 (2006) Int J Syst Evol Microbiol 56:1459–1460Google Scholar
  194. Validation List N 115 (2007) Int J Syst Evol Microbiol 57:893–897Google Scholar
  195. Valiente Moro C, Thioulouse J, Chauve C, Normand P, Zenner L (2009) Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res Microbiol 160:63–70PubMedGoogle Scholar
  196. van der Vorm ER, von Rosenstiel IA, Spanjaard L, Dankert J (1999) Gas gangrene in an immunocompromised girl due to a Clostridium ramosum infection. Clin Infect Dis 28:923–924PubMedGoogle Scholar
  197. Van Eldere J, Robben J, De Pauw G, Merckx R, Eyssen H (1988) Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans. Appl Environ Microbiol 54:2112–2117PubMedPubMedCentralGoogle Scholar
  198. Vaughan-Higgins RJ, Bradfield K, Friend JA, Riley TV, Vitali SD (2013) Erysipelas in a numbat (Myrmecobius fasciatus). J Zoo Wildl Med 44:208–211PubMedGoogle Scholar
  199. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315PubMedGoogle Scholar
  200. Venn-Watson S, Daniels R, Smith C (2012) Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis Aquat Organ 99:237–242PubMedGoogle Scholar
  201. Veraldi S, Girgenti V, Dassoni F, Gianotti R (2009) Erysipeloid: a review. Clin Exp Dermatol 34:859–862PubMedGoogle Scholar
  202. Verbarg S, Rheims H, Emus S, Frühling A, Kroppenstedt RM, Stackebrandt E, Schumann P (2004) Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. Int J Syst Evol Microbiol 54:221–225PubMedGoogle Scholar
  203. Von Graevenitz A, Osterhout G, Dick J (1991) Grouping of some clinically relevant gram-positive rods by automated fatty acid analysis. Diagnostic implications. APMIS 99:147–154Google Scholar
  204. Wade WG (2009) Genus I. Eubacterium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 865–881Google Scholar
  205. Wagner RD, Johnson SJ, Cerniglia CE, Erickson BD (2011) Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases. Antimicrob Agents Chemother 55:4990–4998PubMedPubMedCentralGoogle Scholar
  206. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, Petrovska L (2011) High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 11:7PubMedPubMedCentralGoogle Scholar
  207. Wang Q, Fidalgo S, Chang BJ, Mee BJ, Riley TV (2002) The detection and recovery of Erysipelothrix spp. in meat and abattoir samples in Western Australia. J Appl Microbiol 92:844–850PubMedGoogle Scholar
  208. Wang Q, Chang BJ, Riley TV (2010) Erysipelothrix rhusiopathiae. Vet Microbiol 140:405–417PubMedGoogle Scholar
  209. Wei H, Dong L, Wang T, Zhang M, Hua W et al (2010) Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure. FEMS Microbiol Ecol 73:577–586PubMedGoogle Scholar
  210. White TG, Mirikitani FK (1976) Some biological and physical chemical properties of Erysipelothrix rhusiopathiae. Cornell Vet 66:152–163PubMedGoogle Scholar
  211. Wilkinson BJ, Jones D (1977) A numerical taxonomic survey of Listeria and related bacteria. J Gen Microbiol 98:399–421PubMedGoogle Scholar
  212. Willems A, Moore WEC, Weiss N, Collins MD (1997) Phenotypic and phylogenetic characterization of some Eubacterium-like isolates containing a novel type B wall murein from human feces: description of Holdemania filiformis gen. nov., sp. nov. Int J Syst Bacteriol 47:1201–1204PubMedGoogle Scholar
  213. Williams SM, Hafner S, Sundram Y (2007) Liver granulomas due to Eubacterium tortuosum in a seven-week-old Bobwhite quail. Avian Dis 51:797–799PubMedGoogle Scholar
  214. Wood RL (1965) A selective liquid medium utilizing antibiotics for isolation of Erysipelothrix insidiosa. Am J Vet Res 26:1303–1308PubMedGoogle Scholar
  215. Wood RL (1974a) Isolation of pathogenic Erysipelothrix rhusiopathiae from feces of apparently healthy swine. Am J Vet Res 35:41–43PubMedGoogle Scholar
  216. Wood RL (1974b) Erysipelothrix infection. In: Hubbert WT, McCullough WF, Schnurrenberger PR (eds) Diseases transmitted from animals to man, 6th edn. Thomas, Springfield, pp 271–281Google Scholar
  217. Wood RL (1984) Swine erysipelas—a review of prevalence and research. J Am Vet Med Assoc 184:944–949PubMedGoogle Scholar
  218. Wood RL, Packer R (1972) Isolation of Erysipelothrix rhusiopathiae from soil and manure of swine-raising premises. Am J Vet Res 33:1611–1620PubMedGoogle Scholar
  219. Woodbine M (1950) Erysipelothrix rhusiopathiae. Bacteriology and chemotherapy. Bacteriol Rev 14:161–178PubMedPubMedCentralGoogle Scholar
  220. Yamazaki Y (2006) A multiplex polymerase chain reaction for discriminating Erysipelothrix rhusiopathiae from Erysipelothrix tonsillarum. J Vet Diagn Invest 18:384–387PubMedGoogle Scholar
  221. Yang QB, Fan LN, Shi Q (2010) Polymerase chain reaction-denaturing gradient gel electrophoresis, cloning, and sequence analysis of bacteria associated with acute periapical abscesses in children. J Endod 36:218–223PubMedGoogle Scholar
  222. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  223. Zhang C, Hou BX, Zhao HY, Sun Z (2012a) Microbial diversity in failed endodontic root-filled teeth. Chin Med J (Engl) 125(6):1163–1168Google Scholar
  224. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L (2012b) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 7:e42529PubMedPubMedCentralGoogle Scholar
  225. Zheng G, Summanen PH, Talan D, Bennion R, Rowlinson MC, Finegold SM (2010) Phenotypic and molecular characterization of Solobacterium moorei isolates from patients with wound infection. J Clin Microbiol 48:873–876PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Susanne Verbarg
    • 1
  • Markus Göker
    • 1
  • Carmen Scheuner
    • 1
  • Peter Schumann
    • 1
  • Erko Stackebrandt
    • 1
  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHBraunschweigGermany

Personalised recommendations