Advertisement

Vascular Redox Signaling, Redox Switches in Endothelial Nitric Oxide Synthase (eNOS Uncoupling), and Endothelial Dysfunction

Reference work entry

Abstract

Many diseases and drug-induced complications are associated with – or even caused by – an imbalance between the formation of reactive oxygen and nitrogen species (RONS) and antioxidant enzymes catalyzing the breakdown of these harmful oxidants. According to the “kindling radical” hypothesis, initial formation of RONS may trigger the activation of additional sources of RONS in certain pathological conditions. This chapter will focus on the uncoupling of endothelial nitric oxide synthase (eNOS) by RONS and will focus on the different “redox switches” that are involved in the uncoupling process of eNOS. The oxidative depletion of tetrahydrobiopterin (BH4), oxidative disruption of the zinc-sulfur cluster in the binding region of the dimeric eNOS complex, and S-glutathionylation of the eNOS reductase domain will be discussed as potential pathways for eNOS uncoupling. In addition, protein kinase C (PKC)-dependent phosphorylation of threonine 495 in the reductase domain, protein tyrosine kinase-2 (PYK-2)-dependent phosphorylation of tyrosine 657 in the reductase domain, RONS-triggered increases in levels of asymmetric dimethylarginine (ADMA), and l-arginine depletion will be highlighted as alternative reasons for dysfunctional eNOS. Finally, the clinical perspectives of eNOS uncoupling (and dysfunction) for cardiovascular disease are presented.

Keywords

Mitochondria NADPH oxidase Nitric oxide synthase uncoupling Oxidative stress Peroxynitrite Superoxide Xanthine oxidase 

Notes

Acknowledgments

We thank Margot Neuser and Thilo Weckmüller for graphical assistance. The technical assistance of Jörg Schreiner and Angelica Karpi during our ongoing studies in the last years is gratefully acknowledged. The present work was supported by generous financial support by the Johannes Gutenberg University and Medical Center Mainz (MAIFOR and Forschungsfonds grants to A.D.).

References

  1. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207PubMedGoogle Scholar
  2. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. Faseb J 19:1088–1095PubMedGoogle Scholar
  3. Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420PubMedGoogle Scholar
  4. Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112:725–735PubMedCentralPubMedGoogle Scholar
  5. Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24:445–450PubMedGoogle Scholar
  6. Alvarez de Sotomayor M, Perez-Guerrero C, Herrera MD, Marhuenda E (1999) Effects of chronic treatment with simvastatin on endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 17:769–776PubMedGoogle Scholar
  7. Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, Leeson P, Neubauer S, Ratnatunga C, Pillai R, Refsum H, Channon KM (2006) 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114:1193–1201PubMedGoogle Scholar
  8. Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ (2001) Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 98:12056–12061PubMedCentralPubMedGoogle Scholar
  9. Baker TA, Milstien S, Katusic ZS (2001) Effect of vitamin C on the availability of tetrahydrobiopterin in human endothelial cells. J Cardiovasc Pharmacol 37:333–338PubMedGoogle Scholar
  10. Baumann M, Hermans JJ, Janssen BJ, Peutz-Kootstra C, Witzke O, Heemann U, Smits JF, Boudier HA (2007a) Transient prehypertensive treatment in spontaneously hypertensive rats: a comparison of spironolactone and losartan regarding long-term blood pressure and target organ damage. J Hypertens 25:2504–2511PubMedGoogle Scholar
  11. Baumann M, Megens R, Bartholome R, Dolff S, van Zandvoort MA, Smits JF, Struijker-Boudier HA, De Mey JG (2007b) Prehypertensive renin-angiotensin-aldosterone system blockade in spontaneously hypertensive rats ameliorates the loss of long-term vascular function. Hypertens Res 30:853–861PubMedGoogle Scholar
  12. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437PubMedGoogle Scholar
  13. Bendall JK, Alp NJ, Warrick N, Cai S, Adlam D, Rockett K, Yokoyama M, Kawashima S, Channon KM (2005) Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression. Circ Res 97:864–871PubMedGoogle Scholar
  14. Berka V, Wu G, Yeh HC, Palmer G, Tsai AL (2004) Three different oxygen-induced radical species in endothelial nitric-oxide synthase oxygenase domain under regulation by l-arginine and tetrahydrobiopterin. J Biol Chem 279:32243–32251PubMedGoogle Scholar
  15. Berka V, Wang LH, Tsai AL (2008) Oxygen-induced radical intermediates in the nNOS oxygenase domain regulated by l-arginine, tetrahydrobiopterin, and thiol. Biochemistry 47:405–420PubMedGoogle Scholar
  16. Berkenboom G, Fontaine D, Unger P, Baldassarre S, Preumont N, Fontaine J (1999) Absence of nitrate tolerance after long-term treatment with ramipril: an endothelium-dependent mechanism. J Cardiovasc Pharmacol 34:547–553PubMedGoogle Scholar
  17. Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, Verhaar MC, Joles JA (2006) Tetrahydrobiopterin, but not l-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension 47:87–94PubMedGoogle Scholar
  18. Bode-Boger SM, Scalera F, Ignarro LJ (2007) The l-arginine paradox: importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol Ther 114:295–306PubMedGoogle Scholar
  19. Boger RH (2003a) Association of asymmetric dimethylarginine and endothelial dysfunction. Clin Chem Lab Med 41:1467–1472PubMedGoogle Scholar
  20. Boger RH (2003b) When the endothelium cannot say ‘NO’ anymore. ADMA, an endogenous inhibitor of NO synthase, promotes cardiovascular disease. Eur Heart J 24:1901–1902PubMedGoogle Scholar
  21. Brandes RP (2005) Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension 45:847–848PubMedGoogle Scholar
  22. Butler R, Morris AD, Belch JJ, Hill A, Struthers AD (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751PubMedGoogle Scholar
  23. Cai S, Khoo J, Channon KM (2005a) Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovasc Res 65:823–831PubMedGoogle Scholar
  24. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM (2005b) Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia 48:1933–1940PubMedGoogle Scholar
  25. Chalupsky K, Cai H (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 102:9056–9061PubMedCentralPubMedGoogle Scholar
  26. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118PubMedCentralPubMedGoogle Scholar
  27. Chen CA, Lin CH, Druhan LJ, Wang TY, Chen YR, Zweier JL (2011) Superoxide induces eNOS protein Thiyl radical formation: a novel mechanism regulating eNOS function and coupling. J Biol Chem 286(33):29098–29107PubMedCentralPubMedGoogle Scholar
  28. Chen AF, Chen DD, Daiber A, Faraci FM, Li H, Rembold CM, Laher I (2012) Free radical biology of the cardiovascular system. Clin Sci (Lond) 123:73–91Google Scholar
  29. Closs EI, Ostad MA, Simon A, Warnholtz A, Jabs A, Habermeier A, Daiber A, Forstermann U, Munzel T (2012) Impairment of the extrusion transporter for asymmetric dimethyl-l-arginine: a novel mechanism underlying vasospastic angina. Biochem Biophys Res Commun 423(2):218–223PubMedGoogle Scholar
  30. Cooke JP (2000) Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 20:2032–2037PubMedGoogle Scholar
  31. Crow JP, Beckman JS, McCord JM (1995) Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochemistry 34:3544–3552PubMedGoogle Scholar
  32. d’Uscio LV, Milstien S, Richardson D, Smith L, Katusic ZS (2003) Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res 92:88–95PubMedGoogle Scholar
  33. Daiber A (2010) Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 1797:897–906PubMedGoogle Scholar
  34. Daiber A, Münzel T (2006) Oxidativer stress, redoxregulation und NO-Bioverfügbarkeit - experimentelle und klinische Aspekte. Steinkopff Verlag Darmstadt, DarmstadtGoogle Scholar
  35. Daiber A, Ullrich V (2002) Radikalchemie im organismus: stickstoffmonoxid, superoxid und peroxynitrit. Chemie in unserer Zeit 36:366–375Google Scholar
  36. Daiber A, Frein D, Namgaladze D, Ullrich V (2002) Oxidation and nitrosation in the nitrogen monoxide/superoxide system. J Biol Chem 277:11882–11888PubMedGoogle Scholar
  37. Daiber A, Oelze M, August M, Wendt M, Sydow K, Wieboldt H, Kleschyov AL, Munzel T (2004) Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012. Free Radic Res 38:259–269PubMedGoogle Scholar
  38. Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, Hink U, Mulsch A, Scharffetter-Kochanek K, Munzel T (2005) Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/−): a novel approach to assess the role of oxidative stress for the development of nitrate tolerance. Mol Pharmacol 68:579–588PubMedGoogle Scholar
  39. Desco MC, Asensi M, Marquez R, Martinez-Valls J, Vento M, Pallardo FV, Sastre J, Vina J (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes 51:1118–1124PubMedGoogle Scholar
  40. Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260PubMedGoogle Scholar
  41. Dikalov S, Griendling KK, Harrison DG (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49:717–727PubMedCentralPubMedGoogle Scholar
  42. Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Owens GK, Lambeth JD, Griendling KK (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112:2668–2676PubMedGoogle Scholar
  43. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010a) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116PubMedCentralPubMedGoogle Scholar
  44. Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010b) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299:H673–H679PubMedCentralPubMedGoogle Scholar
  45. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605PubMedGoogle Scholar
  46. Dodd OJ, Pearse DB (2000) Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury. Am J Physiol Heart Circ Physiol 279:H303–H312Google Scholar
  47. Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903PubMedGoogle Scholar
  48. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496PubMedGoogle Scholar
  49. Drexler H, Zeiher AM (1991) Endothelial function in human coronary arteries in vivo. Focus on hypercholesterolemia. Hypertension 18:II90–II99PubMedGoogle Scholar
  50. Duffy SJ, Gokce N, Holbrook M, Hunter LM, Biegelsen ES, Huang A, Keaney JF Jr, Vita JA (2001) Effect of ascorbic acid treatment on conduit vessel endothelial dysfunction in patients with hypertension. Am J Physiol Heart Circ Physiol 280:H528–H534PubMedGoogle Scholar
  51. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68–E75PubMedGoogle Scholar
  52. Flint DH, Tuminello JF, Emptage MH (1993) The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376PubMedGoogle Scholar
  53. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714PubMedGoogle Scholar
  54. Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857PubMedGoogle Scholar
  55. Frein D, Schildknecht S, Bachschmid M, Ullrich V (2005) Redox regulation: a new challenge for pharmacology. Biochem Pharmacol 70:811–823PubMedGoogle Scholar
  56. Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Menzoian JO, Vita JA (2002) Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 105:1567–1572PubMedGoogle Scholar
  57. Gori T, Burstein JM, Ahmed S, Miner SE, Al-Hesayen A, Kelly S, Parker JD (2001) Folic acid prevents nitroglycerin-induced nitric oxide synthase dysfunction and nitrate tolerance: a human in vivo study. Circulation 104:1119–1123PubMedGoogle Scholar
  58. Gori T, Saunders L, Ahmed S, Parker JD (2003) Effect of folic acid on nitrate tolerance in healthy volunteers: differences between arterial and venous circulation. J Cardiovasc Pharmacol 41:185–190PubMedGoogle Scholar
  59. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108:2034–2040.PubMedGoogle Scholar
  60. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662PubMedGoogle Scholar
  61. Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354PubMedGoogle Scholar
  62. Harrison DG, Ohara Y (1995) Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: implications for impaired vasomotion. Am J Cardiol 75:75B–81BPubMedGoogle Scholar
  63. Harrison DG, Chen W, Dikalov S, Li L (2010) Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications. Adv Pharmacol 60:107–132PubMedGoogle Scholar
  64. Hayashi T, Juliet PA, Kano-Hayashi H, Tsunekawa T, Dingqunfang D, Sumi D, Matsui-Hirai H, Fukatsu A, Iguchi A (2005) NADPH oxidase inhibitor, apocynin, restores the impaired endothelial-dependent and -independent responses and scavenges superoxide anion in rats with type 2 diabetes complicated by NO dysfunction. Diabetes Obes Metab 7:334–343PubMedGoogle Scholar
  65. He C, Choi HC, Xie Z (2010) Enhanced tyrosine nitration of prostacyclin synthase is associated with increased inflammation in atherosclerotic carotid arteries from type 2 diabetic patients. Am J Pathol 176:2542–2549PubMedCentralPubMedGoogle Scholar
  66. Heinzel B, John M, Klatt P, Bohme E, Mayer B (1992) Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 281(Pt 3):627–630PubMedCentralPubMedGoogle Scholar
  67. Heitzer T, Just H, Munzel T (1996a) Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94:6–9PubMedGoogle Scholar
  68. Heitzer T, Yla-Herttuala S, Luoma J, Kurz S, Munzel T, Just H, Olschewski M, Drexler H (1996b) Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 93:1346–1353PubMedGoogle Scholar
  69. Heitzer T, Just H, Brockhoff C, Meinertz T, Olschewski M, Munzel T (1998) Long-term nitroglycerin treatment is associated with supersensitivity to vasoconstrictors in men with stable coronary artery disease: prevention by concomitant treatment with captopril. J Am Coll Cardiol 31:83–88PubMedGoogle Scholar
  70. Heitzer T, Brockhoff C, Mayer B, Warnholtz A, Mollnau H, Henne S, Meinertz T, Munzel T (2000a) Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 86:E36–E41PubMedGoogle Scholar
  71. Heitzer T, Krohn K, Albers S, Meinertz T (2000b) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia 43:1435–1438PubMedGoogle Scholar
  72. Heitzer T, Finckh B, Albers S, Krohn K, Kohlschutter A, Meinertz T (2001a) Beneficial effects of alpha-lipoic acid and ascorbic acid on endothelium-dependent, nitric oxide-mediated vasodilation in diabetic patients: relation to parameters of oxidative stress. Free Radic Biol Med 31:53–61PubMedGoogle Scholar
  73. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T (2001b) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678PubMedGoogle Scholar
  74. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22PubMedGoogle Scholar
  75. Hink U, Oelze M, Kolb P, Bachschmid M, Zou MH, Daiber A, Mollnau H, August M, Baldus S, Tsilimingas N, Walter U, Ullrich V, Munzel T (2003) Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. J Am Coll Cardiol 42:1826–1834PubMedGoogle Scholar
  76. Hirai N, Kawano H, Yasue H, Shimomura H, Miyamoto S, Soejima H, Kajiwara I, Sakamoto T, Yoshimura M, Nakamura H, Yodoi J, Ogawa H (2003) Attenuation of nitrate tolerance and oxidative stress by an angiotensin II receptor blocker in patients with coronary spastic angina. Circulation 108:1446–1450PubMedGoogle Scholar
  77. Ikejima H, Imanishi T, Tsujioka H, Kuroi A, Muragaki Y, Mochizuki S, Goto M, Yoshida K, Akasaka T (2008) Effect of pioglitazone on nitroglycerin-induced impairment of nitric oxide bioavailability by a catheter-type nitric oxide sensor. Circ J 72:998–1002PubMedGoogle Scholar
  78. Ionova IA, Vasquez-Vivar J, Whitsett J, Herrnreiter A, Medhora M, Cooley BC, Pieper GM (2008) Deficient BH4 production via de novo and salvage pathways regulates NO responses to cytokines in adult cardiac myocytes. Am J Physiol Heart Circ Physiol 295:H2178–H2187PubMedCentralPubMedGoogle Scholar
  79. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169PubMedCentralPubMedGoogle Scholar
  80. Jacobi J, Maas R, Cordasic N, Koch K, Schmieder RE, Boger RH, Hilgers KF (2008) Role of asymmetric dimethylarginine for angiotensin II-induced target organ damage in mice. Am J Physiol Heart Circ Physiol 294:H1058–H1066PubMedGoogle Scholar
  81. Janiszewski M, Souza HP, Liu X, Pedro MA, Zweier JL, Laurindo FR (2002) Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Free Radic Biol Med 32:446–453PubMedGoogle Scholar
  82. Jankov RP, Kantores C, Pan J, Belik J (2008) Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 294:L233–L245PubMedGoogle Scholar
  83. Jia SJ, Jiang DJ, Hu CP, Zhang XH, Deng HW, Li YJ (2006) Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine level by the NADPH oxidase pathway in endothelial cells. Vascul Pharmacol 44:143–148PubMedGoogle Scholar
  84. Khoo JP, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K, Wilkins MR, Channon KM (2005) Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111:2126–2133PubMedGoogle Scholar
  85. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y (2005) Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 45:438–444PubMedGoogle Scholar
  86. Kinoshita H, Milstien S, Wambi C, Katusic ZS (1997) Inhibition of tetrahydrobiopterin biosynthesis impairs endothelium-dependent relaxations in canine basilar artery. Am J Physiol 273:H718–H724PubMedGoogle Scholar
  87. Kintscher U, Bramlage P, Paar WD, Thoenes M, Unger T (2007) Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the treat to target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol 6:12PubMedCentralPubMedGoogle Scholar
  88. Knorr M, Hausding M, Kroller-Schuhmacher S, Steven S, Oelze M, Heeren T, Scholz A, Gori T, Wenzel P, Schulz E, Daiber A, Munzel T (2011) Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler Thromb Vasc Biol 31(10):2223–2231PubMedGoogle Scholar
  89. Kullo IJ, Schwartz RS, Pompili VJ, Tsutsui M, Milstien S, Fitzpatrick LA, Katusic ZS, O’Brien T (1997) Expression and function of recombinant endothelial NO synthase in coronary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 17:2405–2412PubMedGoogle Scholar
  90. Kurz S, Hink U, Nickenig G, Borthayre AB, Harrison DG, Munzel T (1999) Evidence for a causal role of the renin-angiotensin system in nitrate tolerance. Circulation 99:3181–3187PubMedGoogle Scholar
  91. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554PubMedGoogle Scholar
  92. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515PubMedGoogle Scholar
  93. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209PubMedCentralPubMedGoogle Scholar
  94. Landmesser U, Spiekermann S, Preuss C, Sorrentino S, Fischer D, Manes C, Mueller M, Drexler H (2007) Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol 27:943–948PubMedGoogle Scholar
  95. Lass A, Suessenbacher A, Wolkart G, Mayer B, Brunner F (2002) Functional and analytical evidence for scavenging of oxygen radicals by l-arginine. Mol Pharmacol 61:1081–1088PubMedGoogle Scholar
  96. Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T, Harrison DG (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103:1282–1288PubMedGoogle Scholar
  97. Leiper J, Murray-Rust J, McDonald N, Vallance P (2002) S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci USA 99:13527–13532PubMedCentralPubMedGoogle Scholar
  98. Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, Chen AF (2003) Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 107:1053–1058PubMedGoogle Scholar
  99. Li H, Witte K, August M, Brausch I, Godtel-Armbrust U, Habermeier A, Closs EI, Oelze M, Munzel T, Forstermann U (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol 47:2536–2544PubMedGoogle Scholar
  100. Li L, Chen W, Rezvan A, Jo H, Harrison DG (2011) Tetrahydrobiopterin deficiency and nitric oxide synthase uncoupling contribute to atherosclerosis induced by disturbed flow. Arterioscler Thromb Vasc Biol 31:1547–1554PubMedCentralPubMedGoogle Scholar
  101. Lin D, Takemoto DJ (2005) Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. J Biol Chem 280:13682–13693PubMedGoogle Scholar
  102. Lin MI, Fulton D, Babbitt R, Fleming I, Busse R, Pritchard KA Jr, Sessa WC (2003) Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of l-arginine metabolism to efficient nitric oxide production. J Biol Chem 278:44719–44726PubMedGoogle Scholar
  103. Liochev SI, Fridovich I (1997) Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli. Proc Natl Acad Sci USA 94:2891–2896PubMedCentralPubMedGoogle Scholar
  104. Loomis ED, Sullivan JC, Osmond DA, Pollock DM, Pollock JS (2005) Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. J Pharmacol Exp Ther 315:1058–1064PubMedGoogle Scholar
  105. Loot AE, Schreiber JG, Fisslthaler B, Fleming I (2009) Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206:2889–2896PubMedCentralPubMedGoogle Scholar
  106. Manevich Y, Townsend DM, Hutchens S, Tew KD (2010) Diazeniumdiolate mediated nitrosative stress alters nitric oxide homeostasis through intracellular calcium and S-glutathionylation of nitric oxide synthetase. PLoS One 5:e14151PubMedCentralPubMedGoogle Scholar
  107. Mather KJ, Verma S, Anderson TJ (2001) Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 37:1344–1350PubMedGoogle Scholar
  108. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–2685PubMedGoogle Scholar
  109. McCord JM, Keele BB Jr, Fridovich I (1971) An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA 68:1024–1027PubMedCentralPubMedGoogle Scholar
  110. Mehl M, Bidmon HJ, Hilbig H, Zilles K, Dringen R, Ullrich V (1999) Prostacyclin synthase is localized in rat, bovine and human neuronal brain cells. Neurosci Lett 271:187–190PubMedGoogle Scholar
  111. Mehler PS, Coll JR, Estacio R, Esler A, Schrier RW, Hiatt WR (2003) Intensive blood pressure control reduces the risk of cardiovascular events in patients with peripheral arterial disease and type 2 diabetes. Circulation 107:753–756PubMedGoogle Scholar
  112. Meininger CJ, Cai S, Parker JL, Channon KM, Kelly KA, Becker EJ, Wood MK, Wade LA, Wu G (2004) GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J 18:1900–1902PubMedGoogle Scholar
  113. Miller RT, Martasek P, Roman LJ, Nishimura JS, Masters BS (1997) Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry 36:15277–15284PubMedGoogle Scholar
  114. Miller AA, Megson IL, Gray GA (2000) Inducible nitric oxide synthase-derived superoxide contributes to hypereactivity in small mesenteric arteries from a rat model of chronic heart failure. Br J Pharmacol 131:29–36PubMedCentralPubMedGoogle Scholar
  115. Milstien S, Katusic Z (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263:681–684PubMedGoogle Scholar
  116. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65PubMedGoogle Scholar
  117. Mollnau H, Schulz E, Daiber A, Baldus S, Oelze M, August M, Wendt M, Walter U, Geiger C, Agrawal R, Kleschyov AL, Meinertz T, Munzel T (2003) Nebivolol prevents vascular NOS III uncoupling in experimental hyperlipidemia and inhibits NADPH oxidase activity in inflammatory cells. Arterioscler Thromb Vasc Biol 23:615–621PubMedGoogle Scholar
  118. Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 95:187–194PubMedCentralPubMedGoogle Scholar
  119. Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M, Oelze M, Skatchkov M, Warnholtz A, Duncker L, Meinertz T, Forstermann U (2000a) Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 86:E7–E12PubMedGoogle Scholar
  120. Munzel T, Mollnau H, Hartmann M, Geiger C, Oelze M, Warnholtz A, Yehia AH, Forstermann U, Meinertz T (2000b) Effects of a nitrate-free interval on tolerance, vasoconstrictor sensitivity and vascular superoxide production. J Am Coll Cardiol 36:628–634PubMedGoogle Scholar
  121. Munzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22:1761–1768PubMedGoogle Scholar
  122. Munzel T, Daiber A, Ullrich V, Mulsch A (2005) vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol 25:1551–1557PubMedGoogle Scholar
  123. Namgaladze D, Hofer HW, Ullrich V (2002) Redox control of calcineurin by targeting the binuclear Fe(2+)-Zn(2+) center at the enzyme active site. J Biol Chem 277:5962–5969PubMedGoogle Scholar
  124. Nishino T (1997) The conversion from the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by modification of cysteine residues with fluorodinitrobenzene. J Biol Chem 272:29859–29864PubMedGoogle Scholar
  125. Oelze M, Daiber A, Brandes RP, Hortmann M, Wenzel P, Hink U, Schulz E, Mollnau H, von Sandersleben A, Kleschyov AL, Mulsch A, Li H, Forstermann U, Munzel T (2006) Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension 48:677–684PubMedGoogle Scholar
  126. Oelze M, Schuhmacher S, Daiber A (2010) Organic nitrates and nitrate resistance in diabetes: the role of vascular dysfunction and oxidative stress with emphasis on antioxidant properties of pentaerithrityl tetranitrate. Exp Diabetes Res 2010:213176PubMedCentralPubMedGoogle Scholar
  127. Oelze M, Knorr M, Schuhmacher S, Heeren T, Otto C, Schulz E, Reifenberg K, Wenzel P, Munzel T, Daiber A (2011) Vascular dysfunction in streptozotocin-induced experimental diabetes strictly depends on insulin deficiency. J Vasc Res 48:275–284PubMedGoogle Scholar
  128. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551PubMedCentralPubMedGoogle Scholar
  129. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Ghadanfar M, Weissbach N, Xiang Z, Armbrecht J, Pfeffer MA (2009) Aliskiren Trial in type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE): rationale and study design. Nephrol Dial Transplant 24:1663–1671PubMedGoogle Scholar
  130. Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, Ferraro A, Chello M, Mastroroberto P, Verdecchia P, Schillaci G (2001) Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 104:191–196PubMedGoogle Scholar
  131. Pitt B, Stier CT Jr, Rajagopalan S (2003) Mineralocorticoid receptor blockade: new insights into the mechanism of action in patients with cardiovascular disease. J Renin Angiotensin Aldosterone Syst 4:164–168PubMedGoogle Scholar
  132. Pou S, Keaton L, Surichamorn W, Rosen GM (1999) Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem 274:9573–9580PubMedGoogle Scholar
  133. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008PubMedCentralPubMedGoogle Scholar
  134. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464PubMedGoogle Scholar
  135. Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, Wang YX (2008) Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 45:1223–1231PubMedCentralPubMedGoogle Scholar
  136. Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59PubMedGoogle Scholar
  137. Ryan MG, Balendran A, Harrison R, Wolstenholme A, Bulkley GB (1997) Xanthine oxidoreductase: dehydrogenase to oxidase conversion. Biochem Soc Trans 25:530SPubMedGoogle Scholar
  138. Schmidt K, Rehn M, Stessel H, Wolkart G, Mayer B (2010) Evidence against tetrahydrobiopterin depletion of vascular tissue exposed to nitric oxide/superoxide or nitroglycerin. Free Radic Biol Med 48:145–152PubMedGoogle Scholar
  139. Schnabel R, Blankenberg S, Lubos E, Lackner KJ, Rupprecht HJ, Espinola-Klein C, Jachmann N, Post F, Peetz D, Bickel C, Cambien F, Tiret L, Munzel T (2005) Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res 97:e53–e59PubMedGoogle Scholar
  140. Schuhmacher S, Wenzel P, Schulz E, Oelze M, Mang C, Kamuf J, Gori T, Jansen T, Knorr M, Karbach S, Hortmann M, Mathner F, Bhatnagar A, Forstermann U, Li H, Munzel T, Daiber A (2010) Pentaerythritol tetranitrate improves angiotensin II-induced vascular dysfunction via induction of heme oxygenase-1. Hypertension 55:897–904PubMedCentralPubMedGoogle Scholar
  141. Schuhmacher S, Oelze M, Bollmann F, Kleinert H, Otto C, Heeren T, Steven S, Hausding M, Knorr M, Pautz A, Reifenberg K, Schulz E, Gori T, Wenzel P, Munzel T, Daiber A (2011) Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy. Diabetes 60:2608–2616PubMedCentralPubMedGoogle Scholar
  142. Schulz E, Jansen T, Wenzel P, Daiber A, Munzel T (2008) Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 10:1115–1126PubMedGoogle Scholar
  143. Schulz E, Wenzel P, Munzel T, Daiber A (2012) Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal 108(6):1198–1207Google Scholar
  144. Silberman GA, Fan TH, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulden BM, Widder J, Fredd S, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC Jr (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121:519–528PubMedCentralPubMedGoogle Scholar
  145. Slenzka A, Habermeier A, Simon A, Closs EI (2010) Reduced ADMA export - increased ADMA accumulation? Naunyn-Schmiedeberg’s Arch Pharmacol 381:56Google Scholar
  146. Slenzka A, Unger G, Habermeier A, Closs EI (2011) Removal of intracellular asymmetric dimethyl-l-arginine (ADMA) requires system y(+)L membrane transporter - despite significant activity of the metabolising enzyme dimethylarginine dimethylaminohydrolase (DDAH). N aunyn-Schmiedeberg’s Arch Pharmacol 383:30–P077Google Scholar
  147. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936PubMedGoogle Scholar
  148. Stocker R, Huang A, Jeranian E, Hou JY, Wu TT, Thomas SR, Keaney JF Jr (2004) Hypochlorous acid impairs endothelium-derived nitric oxide bioactivity through a superoxide-dependent mechanism. Arterioscler Thromb Vasc Biol 24:2028–2033PubMedGoogle Scholar
  149. Sydow K, Munzel T (2003) ADMA and oxidative stress. Atheroscler Suppl 4:41–51PubMedGoogle Scholar
  150. Tarpey MM, White CR, Suarez E, Richardson G, Radi R, Freeman BA (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211PubMedGoogle Scholar
  151. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28PubMedCentralPubMedGoogle Scholar
  152. Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A, Li H, Rossmann H, Tsimikas S, Reifenberg K, Cheng F, Lehr HA, Blankenberg S, Forstermann U, Munzel T, Lackner KJ (2007) Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:850–857PubMedGoogle Scholar
  153. Tsutsui M, Milstien S, Katusic ZS (1996) Effect of tetrahydrobiopterin on endothelial function in canine middle cerebral arteries. Circ Res 79:336–342PubMedGoogle Scholar
  154. Turko IV, Murad F (2002) Protein nitration in cardiovascular diseases. Pharmacol Rev 54:619–634PubMedGoogle Scholar
  155. Tzemos N, Lim PO, MacDonald TM (2001) Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation 104:511–514PubMedGoogle Scholar
  156. Ullrich V, Kissner R (2006) Redox signaling: bioinorganic chemistry at its best. J Inorg Biochem 100:2079–2086PubMedGoogle Scholar
  157. Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, Koller A (2003) Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 23:418–424PubMedGoogle Scholar
  158. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225PubMedCentralPubMedGoogle Scholar
  159. Vasquez-Vivar J, Hogg N, Martasek P, Karoui H, Pritchard KA Jr, Kalyanaraman B (1999a) Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J Biol Chem 274:26736–26742PubMedGoogle Scholar
  160. Vasquez-Vivar J, Martasek P, Hogg N, Karoui H, Masters BS, Pritchard KA Jr, Kalyanaraman B (1999b) Electron spin resonance spin-trapping detection of superoxide generated by neuronal nitric oxide synthase. Methods Enzymol 301:169–177PubMedGoogle Scholar
  161. Vasquez-Vivar J, Whitsett J, Martasek P, Hogg N, Kalyanaraman B (2001) Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic Biol Med 31:975–985PubMedGoogle Scholar
  162. Vasquez-Vivar J, Martasek P, Whitsett J, Joseph J, Kalyanaraman B (2002) The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J 362:733–739PubMedCentralPubMedGoogle Scholar
  163. Vergnani L, Hatrik S, Ricci F, Passaro A, Manzoli N, Zuliani G, Brovkovych V, Fellin R, Malinski T (2000) Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of l-arginine availability. Circulation 101:1261–1266PubMedGoogle Scholar
  164. Vieira HL, Belzacq AS, Haouzi D, Bernassola F, Cohen I, Jacotot E, Ferri KF, El Hamel C, Bartle LM, Melino G, Brenner C, Goldmacher V, Kroemer G (2001) The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20:4305–4316PubMedGoogle Scholar
  165. Wang S, Xu J, Song P, Wu Y, Zhang J, Chul Choi H, Zou MH (2008) Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension 52:484–490PubMedCentralPubMedGoogle Scholar
  166. Warnholtz A, Ostad MA, Heitzer T, Thuneke F, Frohlich M, Tschentscher P, Schwedhelm E, Boger R, Meinertz T, Munzel T (2007) AT1-receptor blockade with irbesartan improves peripheral but not coronary endothelial dysfunction in patients with stable coronary artery disease. Atherosclerosis 194:439–445PubMedGoogle Scholar
  167. Watanabe H, Kakihana M, Ohtsuka S, Sugishita Y (1998) Preventive effects of angiotensin-converting enzyme inhibitors on nitrate tolerance during continuous transdermal application of nitroglycerin in patients with chronic heart failure. Jpn Circ J 62:353–358PubMedGoogle Scholar
  168. Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schildknecht S, Ho KK, Weiner H, Bachschmid M, Munzel T, Daiber A (2007) Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem 282:792–799PubMedGoogle Scholar
  169. Wenzel P, Daiber A, Oelze M, Brandt M, Closs E, Xu J, Thum T, Bauersachs J, Ertl G, Zou MH, Forstermann U, Munzel T (2008a) Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis 198:65–76PubMedCentralPubMedGoogle Scholar
  170. Wenzel P, Mollnau H, Oelze M, Schulz E, Wickramanayake JM, Muller J, Schuhmacher S, Hortmann M, Baldus S, Gori T, Brandes RP, Munzel T, Daiber A (2008b) First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular dysfunction. Antioxid Redox Signal 10:1435–1447PubMedGoogle Scholar
  171. Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, Schulz E, Treiber N, Kawamoto T, Scharffetter-Kochanek K, Munzel T, Burkle A, Bachschmid MM, Daiber A (2008c) Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res 80:280–289PubMedCentralPubMedGoogle Scholar
  172. Wenzel P, Schulz E, Oelze M, Muller J, Schuhmacher S, Alhamdani MS, Debrezion J, Hortmann M, Reifenberg K, Fleming I, Munzel T, Daiber A (2008d) AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Radic Biol Med 45:619–626PubMedGoogle Scholar
  173. Whitsett J, Martasek P, Zhao H, Schauer DW, Hatakeyama K, Kalyanaraman B, Vasquez-Vivar J (2006) Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution. Free Radic Biol Med 40:2056–2068PubMedGoogle Scholar
  174. Whitsett J, Picklo MJ Sr, Vasquez-Vivar J (2007) 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation. Arterioscler Thromb Vasc Biol 27:2340–2347PubMedGoogle Scholar
  175. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701PubMedGoogle Scholar
  176. Xia Y, Zweier JL (1997a) Direct measurement of nitric oxide generation from nitric oxide synthase. Proc Natl Acad Sci USA 94:12705–12710PubMedCentralPubMedGoogle Scholar
  177. Xia Y, Zweier JL (1997b) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 94:6954–6958PubMedCentralPubMedGoogle Scholar
  178. Xia Y, Roman LJ, Masters BS, Zweier JL (1998a) Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem 273:22635–22639PubMedGoogle Scholar
  179. Xia Y, Tsai AL, Berka V, Zweier JL (1998b) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273:25804–25808PubMedGoogle Scholar
  180. Xia N, Daiber A, Habermeier A, Closs EI, Thum T, Spanier G, Lu Q, Oelze M, Torzewski M, Lackner KJ, Munzel T, Forstermann U, Li H (2010) Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 335:149–154PubMedGoogle Scholar
  181. Xu J, Xie Z, Reece R, Pimental D, Zou MH (2006) Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler Thromb Vasc Biol 26:2688–2695PubMedGoogle Scholar
  182. Xu J, Wu Y, Song P, Zhang M, Wang S, Zou MH (2007) Proteasome-dependent degradation of guanosine 5’-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116:944–953PubMedGoogle Scholar
  183. Xu J, Wang S, Wu Y, Song P, Zou MH (2009) Tyrosine nitration of PA700 activates the 26S proteasome to induce endothelial dysfunction in mice with angiotensin II-induced hypertension. Hypertension 54:625–632PubMedCentralPubMedGoogle Scholar
  184. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM (2009) Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 120:502–509PubMedCentralPubMedGoogle Scholar
  185. Zee RS, Yoo CB, Pimentel DR, Perlman DH, Burgoyne JR, Hou X, McComb ME, Costello CE, Cohen RA, Bachschmid MM (2010) Redox regulation of sirtuin-1 by S-glutathiolation. Antioxid Redox Signal 13:1023–1032PubMedCentralPubMedGoogle Scholar
  186. Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL (2001) Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res 89:1177–1183PubMedGoogle Scholar
  187. Zhang M, Song P, Xu J, Zou MH (2011) Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 31:125–132PubMedCentralPubMedGoogle Scholar
  188. Zou MH, Bachschmid M (1999) Hypoxia-reoxygenation triggers coronary vasospasm in isolated bovine coronary arteries via tyrosine nitration of prostacyclin synthase. J Exp Med 190:135–139PubMedCentralPubMedGoogle Scholar
  189. Zou M, Jendral M, Ullrich V (1999a) Prostaglandin endoperoxide-dependent vasospasm in bovine coronary arteries after nitration of prostacyclin synthase. Br J Pharmacol 126:1283–1292PubMedCentralPubMedGoogle Scholar
  190. Zou MH, Leist M, Ullrich V (1999b) Selective nitration of prostacyclin synthase and defective vasorelaxation in atherosclerotic bovine coronary arteries. Am J Pathol 154:1359–1365PubMedCentralPubMedGoogle Scholar
  191. Zou MH, Shi C, Cohen RA (2002) Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109:817–826PubMedCentralPubMedGoogle Scholar
  192. Zweier JL, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 14:1769–1775PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.2nd Medical Clinic, Department of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany

Personalised recommendations