Effects of Cellular Phone- and Wi-Fi-Induced Electromagnetic Radiation on Oxidative Stress and Molecular Pathways in Brain

  • Mustafa NazıroğluEmail author
  • Hatice Akman
Reference work entry


It has been suggested that the widespread use of cellular telephones and wireless devices may result in increased health risks resulting from brain exposure to electromagnetic radiation (EMR). The situation has prompted many investigations into the interaction between EMR and neuronal cells, even at intensities not able to produce thermal effects. This chapter reviews the effects of Wi-Fi (2.45 GHz) EMR exposure on the central nervous system in humans and experimental animals.

Several studies have suggested that EMR emitted by wireless devices can interfere with learning and memory in both animal models and human, but the results obtained are controversial and the molecular basis of this interaction is still unclear. Electromagnetic radiation may induce some degenerative effects in the brain by increasing oxidative stress and DNA breakage plus interference with the blood–brain barrier permeability. There are also recent reports on the role of Wi-Fi and mobile phone frequencies on Ca2+ influx through Ca2+ channels. The EMR increases ROS production in the neurons through the activation of oxidant system including NADPH oxidase activity and nitric oxide production. These effects are accompanied by a decrease in brain tissue of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase together with a fall in the levels of nonenzymatic antioxidants such as glutathione and vitamin C.

Cell phone- and Wi-Fi-induced EMR appears to induce degenerative effects through increase of oxidative stress and decrease of antioxidants in the brain that affect neuronal physiological functions. Antioxidants seem to counteract the effects on the EMR, however.


Antioxidants Brain Calcium ion Oxidative stress Wi-Fi 



Dorsal root ganglion




Electromagnetic radiation




Glutathione peroxidase


Polyunsaturated fatty acids


Reactive oxygen species


Superoxide dismutase


Transient receptor potential


Melastatin-like transient receptor potential 2


Voltage-gated calcium channels


Wireless local area networks



The authors wish to thank Dr. Peter J. Butterworth (Nutritional Sciences Division King’s College London, UK) for polishing English of the manuscript.


  1. Aït-Aïssa S, Billaudel B, De Gannes FP, Hurtier A, Haro E, Taxile M, Ruffie G, Athane A, Veyret B, Lagroye I (2010) In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal. Comptes Rendus Phys 11:592–601CrossRefGoogle Scholar
  2. Ammari M, Jacquet A, Lecomte A, Sakly M, Abdelmelek H, de Seze R (2008) Effect of head-only sub-chronic and chronic exposure to 900-MHz GSM electromagnetic fields on spatial memory in rats. Brain Inj 22(13–14):1021–1029PubMedCrossRefGoogle Scholar
  3. Avci B, Akar A, Bilgici B, Tunçel ÖK (2012) Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol 88(11):799–805PubMedCrossRefGoogle Scholar
  4. Behari J (2010) Biological responses of mobile phone frequency exposure. Indian J Exp Biol 48(10):959–981PubMedGoogle Scholar
  5. Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2011) Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108(1):14–20PubMedCrossRefGoogle Scholar
  6. Borek C (2001) Antioxidant health effects of aged garlic extract. J Nutr 131(3s):1010S–1015SPubMedGoogle Scholar
  7. Bowman GL (2012) Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors 38(2):114–122PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bridi R, Crossetti FP, Steffen VM, Henriques AT (2001) The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 15(5):449–451PubMedCrossRefGoogle Scholar
  9. Byus CV, Kartun K, Pieper S, Adey WR (1988) Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res 48:4222–4226PubMedGoogle Scholar
  10. Cassel JC, Cosquer B, Galani R, Kuster N (2004) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 155:37–43PubMedCrossRefGoogle Scholar
  11. Cl B (2009) Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38:135–143CrossRefGoogle Scholar
  12. Cobb BL, Jauchem JR, Adair ER (2004) Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 25:49–57PubMedCrossRefGoogle Scholar
  13. Cosquer B, Galani R, Kuster N, Cassel JC (2005) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 156:65–74PubMedCrossRefGoogle Scholar
  14. Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Ocak AR (2009) Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn Biol Med 28(4):342–354PubMedCrossRefGoogle Scholar
  15. Dasdag S, Akdag MZ, Kizil G, Kizil M, Cakir DU, Yokus B (2012) Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain. Electromagn Biol Med 31(1):67–74PubMedCrossRefGoogle Scholar
  16. Dogan M, Turtay MG, Oguzturk H, Samdanci E, Turkoz Y, Tasdemir S, Alkan A, Bakir S (2012) Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation. Hum Exp Toxicol 31(6):557–564PubMedCrossRefGoogle Scholar
  17. Dubreuil D, Jay T, Edeline JM (2002) Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav Brain Res 129:203–210PubMedCrossRefGoogle Scholar
  18. Dubreuil D, Jay T, Edeline JM (2003) Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res 145:51–61PubMedCrossRefGoogle Scholar
  19. Eberhardt JL, Persson BR, Brun AE, Salford LG, Malmgren LO (2008) Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med 27(3):215–129PubMedCrossRefGoogle Scholar
  20. Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108PubMedGoogle Scholar
  21. Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51(2):195–206PubMedCrossRefGoogle Scholar
  22. Espino J, Pariente JA, Rodríguez AB (2012) Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev 2012:670294. doi:10.1155/2012/670294PubMedCentralPubMedCrossRefGoogle Scholar
  23. Foster KR, Glaser R (2007) Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys 92(6):609–620PubMedCrossRefGoogle Scholar
  24. Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, Koutsogiannopoulou E, Anastasiadou E, Stravopodis DJ, Tsangaris GT, Margaritis LH (2012) Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med 31(4):250–274PubMedCrossRefGoogle Scholar
  25. Franke H, Ringelstein E, Stögbauer F (2005) Electromagnetic Fields (GSM 1800) do not alter blood–brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics 26:529–535PubMedCrossRefGoogle Scholar
  26. Grafström G, Nittby H, Brun A, Malmgren L, Persson BRR, Salford LG, Eberhardt J (2008) Histopathological examinations of rat brains after long-term exposure to GSM-900 mobile phone radiation. Brain Res Bull 77:257–263PubMedCrossRefGoogle Scholar
  27. Gumral N, Naziroglu M, Koyu A, Ongel K, Celik O, Saygin M, Kahriman M, Caliskan S, Kayan M, Gencel O, Others A (2009) Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 132:153–163PubMedCrossRefGoogle Scholar
  28. Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, Ozen S (2004) Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta 340:153–162PubMedCrossRefGoogle Scholar
  29. Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O (2002) Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 20(4):279–283PubMedCrossRefGoogle Scholar
  30. Jing J, Yuhua Z, Xiao-qian Y, Rongping J, Dong-mei G, Xi C (2012) The influence of microwave radiation from cellular phone on fetal rat brain. Electromagn Biol Med 31(1):57–66PubMedCrossRefGoogle Scholar
  31. Jl E, Brr P, Ae B, Lg S, Log M (2008) Blood–brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromag Biol Med 27:215–229CrossRefGoogle Scholar
  32. Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–1440PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kesari KK, Behari J, Kumar S (2010) Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Radiat Biol 86(4):334–343PubMedCrossRefGoogle Scholar
  34. Kesari KK, Kumar S, Behari J (2012) Pathophysiology of microwave radiation: effect on rat brain. Appl Biochem Biotechnol 166(2):379–388PubMedCrossRefGoogle Scholar
  35. Köylü H, Mollaoglu H, Ozguner F, Nazıroğlu M, Delibas N (2006) Melatonin modulates 900 Mhz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health 22(5):211–216PubMedCrossRefGoogle Scholar
  36. Kumar S, Kesari KK, Behari J (2011) The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo) 66(7):1237–1245CrossRefGoogle Scholar
  37. Kumlin T, Iivonen H, Miettinen P, Juvonen A, Van Groen T, Puranen L, Pitkäaho R, Juutilainen J, Tanila H (2007) Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats. Radiat Res 168:471–479PubMedCrossRefGoogle Scholar
  38. Lai H, Singh NP (1996) Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69(4):513–521PubMedCrossRefGoogle Scholar
  39. Lai H, Singh NP (2004) Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 112(6):687–694PubMedCentralPubMedCrossRefGoogle Scholar
  40. Maganioti AE, Hountala CD, Papageorgiou CC, Kyprianou MA, Rabavilas AD, Capsalis CN (2010) Principal component analysis of the P600 waveform: RF and gender effects. Neurosci Lett 478(1):19–23PubMedCrossRefGoogle Scholar
  41. Martens L, De Moerloose J, De Zutter D, De Poorter J, De Wagter C (1995) Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone. Radio Sci 30:283–290CrossRefGoogle Scholar
  42. Martínez-Búrdalo M, Martín A, Sanchis A, Villar R (2009) FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations. Bioelectromagnetics 30(2):142–151PubMedCrossRefGoogle Scholar
  43. Masuda H, Ushiyama A, Takahashi M, Wang J, Fujiwara O, Hikage T, Nojima T, Fujita K, Kudo M, Ohkubo C (2009) Effects of 915 MHZ electromagnetic-field radiation in tem cell on the blood–brain barrier and neurons in the rat brain. Radiat Res 172:66–73PubMedCrossRefGoogle Scholar
  44. Mattson MP, Chan SL (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s Disease. J Mol Neurosci 17:205–224PubMedCrossRefGoogle Scholar
  45. Mcquade JMS, Merritt JH, Miller SA, Scholin T, Cook MC, Salazar A, Rahimi OB, Murphy MR, Mason PA (2009) Radiofrequency-radiation exposure does not induce detectable leakage of albumin across the blood–brain barrier. Radiat Res 171:615–621PubMedCrossRefGoogle Scholar
  46. Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S (2007) Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res 1169:120–124PubMedCrossRefGoogle Scholar
  47. Nazıroğlu M (2007a) Molecular Mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth L (ed) Reactive Oxygen Species and Diseases. Research Signpost Press, Kerala, pp 239–256Google Scholar
  48. Nazıroğlu M (2007b) New molecular mechanisms on the activation of TRPM2 channels by Oxidative Stress and ADP-Ribose. Neurochem Res 32:1990–2001PubMedCrossRefGoogle Scholar
  49. Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191PubMedCrossRefGoogle Scholar
  50. Nazıroğlu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366PubMedCrossRefGoogle Scholar
  51. Nazıroğlu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32(3):134–141PubMedCrossRefGoogle Scholar
  52. Nazıroğlu M, Gümral N (2009) Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 85(8):680–689PubMedCrossRefGoogle Scholar
  53. Nazıroğlu M, Çiğ B, Doğan S, Uğuz AC, Dilek S, Faouzi D (2012a) 2.45-GHz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+ influx in human leukemia cancer cells. Int J Radiat Biol 88:449–456PubMedCrossRefGoogle Scholar
  54. Nazıroğlu M, Tokat S, Demirci S (2012b) Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J Recept Signal Transduct Res 32(6):290–297PubMedCrossRefGoogle Scholar
  55. Nazıroğlu M, Dikici DM, Dursun S (2012c) Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075PubMedCrossRefGoogle Scholar
  56. Nazıroğlu M, Çelik Ö, Özgül C, Çiğ B, Doğan S, Bal R, Gümral N, Rodríguez AB, Pariente JA (2012d) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105:683–692PubMedCrossRefGoogle Scholar
  57. Nazıroğlu M, Yıldız K, Tamtürk B, Erturan I, Flores-Arce M (2012e) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9PubMedGoogle Scholar
  58. Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M (2013) Role of contrast media on oxidative stress, Ca(2+) signaling and apoptosis in kidney. J Membr Biol 246:91–100PubMedCrossRefGoogle Scholar
  59. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM (2005) Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J 19(12):1686–1688PubMedGoogle Scholar
  60. Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, Persson BR, Salford LG, Eberhardt J (2008) Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29(3):219–232PubMedCrossRefGoogle Scholar
  61. Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR, Salford LG (2009) Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16(2–3):103–112PubMedCrossRefGoogle Scholar
  62. O’Connor RP, Madison SD, Leveque P, Roderick HL, Bootman MD (2010) Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheochromocytoma cells or rat hippocampal neurons. PLoS One 5(7):e11828PubMedCentralPubMedCrossRefGoogle Scholar
  63. Omura Y, Losco M (1993) Electro-magnetic fields in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc) as potential contributing factors for the induction of oncogen C-Fos Ab1, oncogen C-Fos Ab2, integrin alpha 5 beta 1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain. Acupunct Electrother Res 18:33–73PubMedGoogle Scholar
  64. Ozmen I, Naziroğlu M, Alici HA, Sahin F, Cengiz M, Eren I (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res 32(1):19–25PubMedCrossRefGoogle Scholar
  65. Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810PubMedCrossRefGoogle Scholar
  66. Paulraj R, Behari J (2006a) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 596(1–2):76–80PubMedCrossRefGoogle Scholar
  67. Paulraj R, Behari J (2006b) Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagn Biol Med 25(1):61–70PubMedCrossRefGoogle Scholar
  68. Pinto R, Lopresto V, Galloni P, Marino C, Mancini S, Lodato R, Pioli C, Lovisolo G (2010) Dosimetry of a set-up for the exposure of newborn mice to 2.45-GHz WiFi frequencies. Radiat Prot Dosimetry 140(4):326–332PubMedCrossRefGoogle Scholar
  69. Platano D, Mesirca P, Paffi A, Pellegrino M, Liberti M, Apollonio F, Bersani F, Aicardi G (2007) Acute exposure to low‐level CW and GSM‐modulated 900 MHz radiofrequency does not affect Ba2+ currents through voltage‐gated calcium channels in rat cortical neurons. Bioelectromagnetics 28:599–607PubMedCrossRefGoogle Scholar
  70. Poulletier De Gannes F, Billaudel B, Taxile M, Haro E, Ruffie G, Leveque P, Veyret B, Lagroye I (2009) Effects of head-only exposure of rats to GSM-900 on blood–brain barrier permeability and neuronal degeneration. Radiat Res 172:359–367CrossRefGoogle Scholar
  71. Salford LG, Brun A, Kjellén E, Pero RW, Persson RB (1997) Whole-body hyperthermia and ADPRT inhibition in experimental treatment of brain tumors. Ann N Y Acad Sci 835:194–202PubMedCrossRefGoogle Scholar
  72. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111(7):881–883PubMedCentralPubMedCrossRefGoogle Scholar
  73. Salford LG, Nittby H, Brun A, Grafström G, Eberhardt JL, Malmgren L, Persson BRR (2007) Non-thermal effects of EMF upon the mammalian brain: the lund experience. The Environmentalist 27:493–500CrossRefGoogle Scholar
  74. Shahin S, Singh VP, Shukla RK, Dhawan A, Gangwar RK, Singh SP, Chaturvedi CM (2013) 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, mus musculus. Appl Biochem Biotechnol 169(5):1727–1751PubMedCrossRefGoogle Scholar
  75. Sienkiewicz ZJ, Blackwell RP, Haylock RGE, Saunders RD, Cobb BL (2000) Low‐level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics 21:151–158PubMedCrossRefGoogle Scholar
  76. Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T, Pavlovic V (2008) Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res 49(6):579–586PubMedCrossRefGoogle Scholar
  77. Tatsuo S (1994) 1994. Protein kinases involved in the expression of long-term potentiation. Int J Biochem 26:735–744CrossRefGoogle Scholar
  78. Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP (2012) Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 88(4):371–378PubMedCrossRefGoogle Scholar
  79. Yioultsis T, Kosmanis T, Kosmidou E, Zygiridis T, Kantartzis N, Xenos T, Tsiboukis T (2002) A comparative study of the biological effects of various mobile phone and wireless LAN antennas. IEEE Trans Magn 38:777–780CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Suleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Electronics and Communication EngineeringSuleyman Demirel UniversityIspartaTurkey

Personalised recommendations