Skip to main content

Mitochondrial Superoxide Flashes – From Signaling to Disease

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants
  • 431 Accesses

Abstract

Respiratory mitochondria spontaneously undergo quantal, brief bursts of superoxide production, named “superoxide flashes.” A property common to all species and cell types examined, the generation of superoxide flashes is coupled to transient opening of the mitochondrial membrane permeability transition pore and depends on the functional integrity of the electron-transfer chain (ETC). The unitary properties of superoxide flashes (amplitude and duration) appear to be stereotypical, at levels from isolated mitochondria to whole organs (e.g., the beating heart) and even to live animals. Functionally, superoxide flashes act as elemental reactive oxygen species (ROS) signaling events (“signaling ROS”) that participate in diverse cellular processes, whereas the constitutive electron leakage of molecular oxygen from the ETC produces the bulk of ROS for the regulation of redox homeostasis (“homeostatic ROS”). In particular, superoxide flash incidence provides a digital readout to gauge glucose- and insulin-stimulated mitochondrial metabolism in live animals, and a novel biomarker of the oxidative stress in hyperosmotic stress, ischemia-reperfusion injury, and neurodegenerative diseases. Such dynamic, locally high levels of ROS in the form of superoxide flashes constitute one of the earliest signals that initiate the cell-death program without appreciably affecting the global ROS level. Moreover, in contrast to the effects of global ROS, superoxide flashes negatively regulate neuronal progenitor cell self-renewal in the developing cerebral cortex. Thus, recent advances in “flashology” have bolstered the notion that ROS act as second messengers in physiological and pathophysiological contexts, and demonstrate the paramount importance of the spatiotemporal organization of ROS signals in determining their signaling efficiency and modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler V, Yin Z, Tew KD, Ronai Z (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18(45):6104–6111. doi:10.1038/sj.onc.1203128

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278(45):44735–44744. doi:10.1074/jbc.M302673200

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662. doi:10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555. doi:ncb1575 [pii] 10.1038/ncb1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 31(4):347–366

    Article  CAS  PubMed  Google Scholar 

  • Barrientos A, Moraes CT (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 274(23):16188–16197

    Article  CAS  PubMed  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280(19):18558–18561. doi:C500089200, [pii] 10.1074/jbc.C500089200

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12(4):674–683. doi:10.4161/cc.23599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    CAS  PubMed  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95(20):11715–11720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278(38):36027–36031. doi:10.1074/jbc.M304854200

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545. doi:10.1152/physrev.00030.2007

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134):740–744

    Article  CAS  PubMed  Google Scholar 

  • Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780(11):1362–1367. doi:10.1016/j.bbagen.2008.02.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dimmeler S, Zeiher AM (2007) A “reductionist” view of cardiomyopathy. Cell 130(3):401–402. doi:10.1016/j.cell.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  • Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci 16:553–567. doi:3705 [pii]

    Article  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi:10.1152/physrev.00018.2001

    CAS  PubMed  Google Scholar 

  • Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474. doi:10.1016/j.cell.2008.02.048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang H, Zhang W, Wang X, Wang W, Li K, Wang Y, Zhang X, Shang S, Tian XL, Zhou J, Weisleder N, Ma J, Zheng M, Chen M, Cheng H (2009) In vivo imaging of superoxide flashes in skeletal muscle. Biophys J 96(3):530a

    Google Scholar 

  • Fang H, Chen M, Ding Y, Shang W, Xu J, Zhang X, Zhang W, Li K, Xiao Y, Gao F, Shang S, Li JC, Tian XL, Wang SQ, Zhou J, Weisleder N, Ma J, Ouyang K, Chen J, Wang X, Zheng M, Wang W, Cheng H (2011) Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res 21(9):1295–1304. doi:10.1038/cr.2011.81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Vareslija D, Tipton KF, Della Corte L (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68(12):2067–2079. doi:10.1007/s00018-011-0682-x

    Article  CAS  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892. doi:1217823110 [pii] 10.1073/pnas.1217823110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    Article  CAS  PubMed  Google Scholar 

  • Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21. doi:10.1196/annals.1354.003

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Ouyang X, Wan R, Cheng H, Mattson MP, Cheng A (2012) Mitochondrial superoxide production negatively regulates neural progenitor proliferation and cerebral cortical development. Stem Cells 30(11):2535–2547. doi:10.1002/stem.1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou T, Zhang X, Xu J, Jian C, Huang Z, Ye T, Hu K, Zheng M, Gao F, Wang X, Cheng H (2013) Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. J Biol Chem 288(7):4602–4612. doi:10.1074/jbc.M112.398297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Z, Zhang W, Gong G, Fang H, Zheng M, Wang X, Xu J, Dirksen RT, Sheu SS, Cheng H, Wang W (2011) Response to “a critical evaluation of cpYFP as a probe for superoxide”. Free Radic Biol Med 51(10):1937–1940. doi:10.1016/j.freeradbiomed.2011.08.024

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Sun L, Ji S, Zhao T, Zhang W, Xu J, Zhang J, Wang Y, Wang X, Franzini-Armstrong C, Zheng M, Cheng H (2013) Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci USA 110(8):2846–2851. doi:10.1073/pnas.1300741110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661. doi:10.1016/j.cell.2004.12.041

    Article  CAS  PubMed  Google Scholar 

  • Kralj JM, Hochbaum DR, Douglass AD, Cohen AE (2011) Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333(6040):345–348. doi:10.1126/science.1204763

    Article  CAS  PubMed  Google Scholar 

  • Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1(−/−) mitochondria. Biochim Biophys Acta 1757(5–6):590–595. doi:S0005-2728(06)00033-8 [pii] 10.1016/j.bbabio.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  • Li K, Zhang W, Fang H, Xie W, Liu J, Zheng M, Wang X, Wang W, Tan W, Cheng H (2012) Superoxide flashes reveal novel properties of mitochondrial reactive oxygen species excitability in cardiomyocytes. Biophys J 102(5):1011–1021. doi:10.1016/j.bpj.2012.01.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Q, Fang H, Shang W, Liu L, Xu Z, Ye T, Wang X, Zheng M, Chen Q, Cheng H (2011) Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. J Biol Chem 286(31):27573–27581. doi:10.1074/jbc.M111.241794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maryanovich M, Gross A (2012) A ROS rheostat for cell fate regulation. Trends Cell Biol. doi:10.1016/j.tcb.2012.09.007

    PubMed  Google Scholar 

  • Moskovitz J, Yim MB, Chock PB (2002) Free radicals and disease. Arch Biochem Biophys 397(2):354–359. doi:10.1006/abbi.2001.2692

    Article  CAS  PubMed  Google Scholar 

  • Muller FL (2009) A critical evaluation of cpYFP as a probe for superoxide. Free Radic Biol Med 47(12):1779–1780. doi:10.1016/j.freeradbiomed.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98(6):3197–3202. doi:10.1073/pnas.051636098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658. doi:10.1038/nature03317

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Bindokas VP, Kowlessur D, Elas M, Milstien S, Marks JD, Halpern HJ, Kang UJ (2001) Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons. J Biol Chem 276(37):34402–34407. doi:10.1074/jbc.M103766200

    Article  CAS  PubMed  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490. doi:S0092867403001168 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583(Pt 1):9–24. doi:10.1113/jphysiol.2007.135871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999. doi:10.1038/nature08119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noble M, Mayer-Proschel M, Proschel C (2005) Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal 7(11–12):1456–1467. doi:10.1089/ars.2005.7.1456

    Article  CAS  PubMed  Google Scholar 

  • Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime drosophila haematopoietic progenitors for differentiation. Nature 461(7263):537–541. doi:10.1038/nature08313

    Article  CAS  PubMed  Google Scholar 

  • Pace GW, Leaf CD (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med 19(4):523–528. doi:0891584995000472 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Pouvreau S (2010) Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One. 5(9). doi:10.1371/journal.pone.0013035

    Google Scholar 

  • Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130(3):427–439. doi:10.1016/j.cell.2007.06.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102(34):12005–12010. doi:0505294102, [pii] 10.1073/pnas.0505294102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarzlander M, Logan DC, Fricker MD, Sweetlove LJ (2011) The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J 437(3):381–387. doi:10.1042/BJ20110883

    Article  PubMed  Google Scholar 

  • Schwarzlander M, Murphy MP, Duchen MR, Logan DC, Fricker MD, Halestrap AP, Muller FL, Rizzuto R, Dick TP, Meyer AJ, Sweetlove LJ (2012) Mitochondrial ‘flashes’: a radical concept repHined. Trends Cell Biol 22(10):503–508. doi:10.1016/j.tcb.2012.07.007

    Article  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790. doi:10.1074/jbc.M207217200

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028

    CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237(2):408–414

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Superoxide flashes in single mitochondria. Cell 134(2):279–290. doi:S0092-8674(08)00769-1, [pii] 10.1016/j.cell.2008.06.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Jian C, Zhang X, Huang Z, Xu J, Hou T, Shang W, Ding Y, Zhang W, Ouyang M, Wang Y, Yang Z, Zheng M, Cheng H (2012) Superoxide flashes: elemental events of mitochondrial ROS signaling in the heart. J Mol Cell Cardiol 52(5):940–948. doi:10.1016/j.yjmcc.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Wang JQ, Chen Q, Wang X, Wang QC, Wang Y, Cheng HP, Guo C, Sun Q, Tang TS (2013) Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J Biol Chem 288(5):3070–3084. doi:10.1074/jbc.M112.407726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei L, Salahura G, Boncompagni S, Kasischke KA, Protasi F, Sheu SS, Dirksen RT (2011) Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB J 25(9):3068–3078. doi:10.1096/fj.11-187252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei-Lapierre L, Gong G, Gerstner BJ, Ducreux S, Yule DI, Pouvreau S, Wang X, Sheu SS, Cheng H, Dirksen RT, Wang W (2013) Respective contribution of mitochondrial superoxide and pH to mt-cpYFP flash activity. J Biol Chem. doi:10.1074/jbc.M113.455709

    PubMed Central  PubMed  Google Scholar 

  • Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108(1):4–18. doi:10.1093/toxsci/kfn263

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Liu J, Wei C, Li K, Xie W, Wang Y, Cheng H (2008) Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes. Cardiovasc Res 77(2):432–441. doi:10.1093/cvr/cvm047

    Article  CAS  PubMed  Google Scholar 

  • Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112. doi:10.1038/nature10632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Huang Z, Hou T, Xu J, Wang Y, Shang W, Ye T, Cheng H, Gao F, Wang X (2013) Superoxide constitutes a major signal of mitochondrial superoxide flash. Life Sci 93(4):178–186. doi:10.1016/j.lfs.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie LH (2012) Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents? Am J Physiol Heart Circ Physiol 302(8):H1636–H1644. doi:10.1152/ajpheart.00742.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321. doi:10.1016/j.cardiores.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192(7):1001–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Iain C. Bruce for critical comments and editing. This work was supported by the National Basic Research Program of China (2013CB531200 and 2011CB809102), the National Science Foundation of China (31221002, 31130067, 31123004 and 30900264) and NIH Grants HL114760 to WW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wang, X., Ma, Q., Wang, W., Cheng, H. (2014). Mitochondrial Superoxide Flashes – From Signaling to Disease. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_189

Download citation

Publish with us

Policies and ethics