Skip to main content

Strategies to Target Mitochondria and Oxidative Stress by Antioxidants

  • 223 Accesses

Abstract

Many antioxidants have shown a marked disparity in their beneficial effects in laboratory studies and their inability to demonstrate beneficial effects in clinical trials. Moreover, it is not uncommon to find highly contradictory clinical results, which may explain why consumers are less enthusiastic about the use of antioxidants.

This review aims to highlight the critical role of reactive oxygen species (ROS) and antioxidants, the potential mechanisms that might account for these discrepancies in clinical trials, and the strategies to target mitochondrial oxidative stress by antioxidants. There is an urgent need to develop standard methods to evaluate antioxidants and oxidative stress in humans at the mitochondrial level. The determination of the basal level of ROS in normal human may be used to identify pathological ROS levels in patients to recommend specific guidelines for antioxidant treatment.

Keywords

  • Antioxidant
  • Mitochondria
  • Standardization methods
  • Oxidative stress

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-30018-9_160
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   2,499.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-30018-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   2,999.99
Price excludes VAT (USA)

References

  • Akoh CC, Min DB Food lipids. Chemistry, nutrition and biotechnology, 3rd edn. CRC press/Taylor and Francis group [Book], Boca raton

    Google Scholar 

  • Bouayed J, Bohn T (2010) Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3(4):228–237

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    CAS  PubMed  CrossRef  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230

    CAS  PubMed  CrossRef  Google Scholar 

  • Carr AC, Zhu BZ, Frei B (2000) Potential antiatherogenic mechanisms of ascorbate (vitamin C) and alpha-tocopherol (vitamin E). Circ Res 87(5):349–354

    CAS  PubMed  CrossRef  Google Scholar 

  • Edeas M (2009) Antioxidants, controversies and perspectives: how to explain the failure of clinical studies using antioxidants? J Soc Biol 203(3):271–280

    CAS  PubMed  CrossRef  Google Scholar 

  • Edeas M, Attaf D, Mailfert AS, Nasu M, Joubet R (2010) Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants. Pathol Biol 58(3):220–225

    CAS  PubMed  CrossRef  Google Scholar 

  • Farbstein D, Kozak-Blickstein A, Levy AP (2010) Antioxidant vitamins and their use in preventing cardiovascular disease. Molecules (Basel, Switz) 15(11):8098–8110

    CAS  CrossRef  Google Scholar 

  • Frankel EN, Finley JW (2008) How to standardize the multiplicity of methods to evaluate natural antioxidants. J Agric Food Chem 56:4901–4908

    CAS  PubMed  CrossRef  Google Scholar 

  • Galati G, Lin A, Sultan AM, O’Brien PJ (2006) Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 40(4):570–580

    CAS  PubMed  CrossRef  Google Scholar 

  • Gizi A, Papassotiriou I, Apostolakou F et al (2007) Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis 46(3):220–225

    CrossRef  Google Scholar 

  • Goralczyk R (2009) Beta-carotene and lung cancer in smokers: review of hypotheses and status of research. Nutr Cancer 61(6):767–774

    CAS  PubMed  CrossRef  Google Scholar 

  • Green K, Brand MD, Murphy MP (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53(Suppl 1):110–118

    CrossRef  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    CAS  PubMed  CrossRef  Google Scholar 

  • Grune T (2002) Oxidants and antioxidative defense. Hum Exp Toxicol 21(2):61–62

    CAS  PubMed  CrossRef  Google Scholar 

  • Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A (2006) Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res 99(9):924–932

    CAS  PubMed  CrossRef  Google Scholar 

  • Halliwell B (1984) Oxygen radicals: a commonsense look at their nature and medical importance. Med Biol 62(2):71–77

    CAS  PubMed  Google Scholar 

  • Halliwell B (2002) Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radic Biol Med 32(10):968–974

    CAS  PubMed  CrossRef  Google Scholar 

  • Halliwell B (2009) The wanderings of free radicals. Free Radic Biol Med 46:531–542

    CAS  PubMed  CrossRef  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    CAS  PubMed  CrossRef  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625

    CAS  PubMed  CrossRef  Google Scholar 

  • Klings ES, Farber HW (2001) Role of free radicals in the pathogenesis of acute chest syndrome in sickle cell disease. Respir Res 2(5):280–285

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Lairon D (2007) Intervention studies on Mediterranean diet and cardiovascular risk. Mol Nutr Food Res 51(10):1209–1214

    CAS  PubMed  Google Scholar 

  • Leppala JM, Virtamo J, Fogelholm R et al (2000) Controlled trial of alpha-tocopherol and beta-carotene supplements on stroke incidence and mortality in male smokers. Arterioscler Thromb Vasc Biol 20(1):230–235

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin KR, Barrett JC (2002) Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 21(2):71–75

    CAS  PubMed  CrossRef  Google Scholar 

  • McCord JM, Edeas MA (2005) SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother 59(4):139–142

    CAS  PubMed  Google Scholar 

  • Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116

    CAS  PubMed  CrossRef  Google Scholar 

  • Misciagna G, De Michele G, Trevisan M (2007) Non enzymatic glycated proteins in the blood and cardiovascular disease. Curr Pharm Des 13(36):3688–3695

    CAS  PubMed  CrossRef  Google Scholar 

  • Mustata GT, Rosca M, Biemel KM, Reihl O, Smith MA, Viswanathan A et al (2005) Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes 54(2):517–526

    CAS  PubMed  CrossRef  Google Scholar 

  • Omura T (1999) Forty years of cytochrome P450. Biochem Biophy Res Commun 266(3):690–698

    CAS  CrossRef  Google Scholar 

  • Patel SR, Sigman M (2008) Antioxidant therapy in male infertility. Urol Clin North Am 35(2):319–330

    PubMed  CrossRef  Google Scholar 

  • Piotrowski WJ, Marczak J (2000) Cellular sources of oxidants in the lung. Int J Occup Med Environ Health 13(4):369–385

    CAS  PubMed  Google Scholar 

  • Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J (1998) Vitamin C exhibits pro-oxidant properties. Nature 392(6676):559

    CAS  PubMed  CrossRef  Google Scholar 

  • Prieme H, Loft S, Nyyssonen K, Salonen JT, Poulsen HE (1997) No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion in smokers. Am J Clin Nutr 65(2):503–507

    CAS  PubMed  Google Scholar 

  • Rammal H, Bouayed J, Soulimani R (2010) A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice. Eur J Pharmacol 627(1–3):173–176

    CAS  PubMed  CrossRef  Google Scholar 

  • Ravelojaona V, Péterszegi G, Molinari J, Gesztesi JL, Robert L (2007) Demonstration of the cytotoxic effect of advanced glycation endproducts (AGE-s). J Soc Biol 201(2):185–188

    CAS  PubMed  CrossRef  Google Scholar 

  • Raza H, John A (2005) Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments. Toxicol Appl Pharmacol 207(3):212–220

    CAS  PubMed  CrossRef  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956

    CAS  PubMed  CrossRef  Google Scholar 

  • Sagun KC, Carcamo JM, Golde DW (2005) Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19(12):1657–1667

    CAS  CrossRef  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956

    CAS  PubMed  CrossRef  Google Scholar 

  • Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762(2):256–265

    CAS  PubMed  CrossRef  Google Scholar 

  • Sies H (2007) Total antioxidant capacity: appraisal of a concept. J Nutr 137:1493–1495

    CAS  PubMed  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27(2):306–314

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Tremellen K (2008) Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update 14(3):243–258

    CAS  PubMed  CrossRef  Google Scholar 

  • Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E et al (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21(24):3872–3878

    CAS  PubMed  CrossRef  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  PubMed  CrossRef  Google Scholar 

  • Van Heerebeek L, Meischl C, Stooker W, Meijer CJ, Niessen HW, Roos D (2002) NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J Clin Pathol 55(8):561–568

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Wang AL, Yu A, Qi H, Zhu XA, Tso M (2007) AGEs mediated expression and secretion of TNF alpha in rat retinal microglia. Exp Eye Res 84(5):905–913

    CAS  PubMed  CrossRef  Google Scholar 

  • Watjen W, Michels G, Steffan B et al (2005) Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J Nutr 135(3):525–531

    PubMed  Google Scholar 

  • Yeh SL, Wang HM, Chen PY, Wu TC (2009) Interactions of beta-carotene and flavonoids on the secretion of pro-inflammatory mediators in an in vitro system. Chem Biol Interact 179(2–3):386–393

    CAS  PubMed  CrossRef  Google Scholar 

  • Yin H (2008) New techniques to detect oxidative stress markers: mass spectrometry-based methods to detect isoprostanes as the gold standard for oxidative stress in vivo. BioFactors (Oxf, Engl) 34(2):109–124

    CAS  CrossRef  Google Scholar 

  • Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103(8):2653–2658

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757(5–6):509–517

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Edeas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Edeas, M., Mailfert, AS. (2014). Strategies to Target Mitochondria and Oxidative Stress by Antioxidants. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_160

Download citation