Skip to main content

Free Radicals and Gastrointestinal Disorders

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Diseases of the gastrointestinal (GI) tract include infection at the mucosal surface, cancers, and chronic inflammatory conditions such as Crohn’s disease and ulcerative colitis. These conditions involve reactive free radical species and oxidative damage during their progression and perhaps in their origin. The term “oxidative stress” has traditionally referred to the imbalance between the generation of reactive oxygen species and the activity of antioxidant defenses. While short-term oxidative responses are beneficial, such as during invasion by a pathogen, long-term oxidative stress can cause tissue destruction due to the production of peroxides and free radicals that damage proteins, lipids, and DNA in the cell. Endogenous and exogenous antioxidants can counteract reactive species in the GI tract, and thus, a balance between oxidative and antioxidant responses is critical for maintaining intestinal health. This chapter will discuss redox biology of the GI tract and how an intricate balance between oxidative and antioxidant responses must be regulated to maintain good GI health. Evidence for the role of oxidative and antioxidant responses associated with GI diseases and syndromes will be reviewed, as well as, an overview of therapeutics to combat oxidative damage associated with GI disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achitei D, Ciobica A et al (2013) Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig Dis Sci [epub - ahead of print]

    Google Scholar 

  • Acquaviva R, Iauk L et al (2011) Oxidative profile in patients with colon cancer: effects of Ruta chalepensis L. Eur Rev Med Pharmacol Sci 15(2):181–191

    CAS  PubMed  Google Scholar 

  • Akiho H, Ihara E et al (2010) Low-grade inflammation plays a pivotal role in gastrointestinal dysfunction in irritable bowel syndrome. World J Gastrointest Pathophysiol 1(3):97–105

    PubMed Central  PubMed  Google Scholar 

  • Aldemir D, Tufan H et al (2003) Age-related alterations of oxidative stress and arginase activity as a response to intestinal ischemia-reperfusion in rat kidney and liver. Transplant Proc 35(7):2811–2815

    CAS  PubMed  Google Scholar 

  • Andoh A, Tsujikawa T et al (2003) N-3 fatty acid-rich diet prevents early response of interleukin-6 elevation in trinitrobenzene sulfonic acid-induced enteritis. Int J Mol Med 12(5):721–725

    CAS  PubMed  Google Scholar 

  • Ardite E, Sans M et al (2000) Replenishment of glutathione levels improves mucosal function in experimental acute colitis. Lab Invest 80(5):735–744

    CAS  PubMed  Google Scholar 

  • Atsumi T, Tonosaki K et al (2008) Salivary free radical-scavenging activity is affected by physical and mental activities. Oral Dis 14(6):490–496

    CAS  PubMed  Google Scholar 

  • Avinash SS, Anitha M et al (2009) Advanced oxidation protein products and total antioxidant activity in colorectal carcinoma. Indian J Physiol Pharmacol 53(4):370–374

    CAS  PubMed  Google Scholar 

  • Balaban RS, Nemoto S et al (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    CAS  PubMed  Google Scholar 

  • Balish E, Warner T (2002) Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 160(6):2253–2257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbara G, Stanghellini V et al (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126(3):693–702

    PubMed  Google Scholar 

  • Barbosa DS, Cecchini R et al (2003) Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 19(10):837–842

    CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Pt 1):C1424–C1437

    CAS  PubMed  Google Scholar 

  • Behrens MI, Silva M et al (2011) Age-dependent increases in apoptosis/necrosis ratios in human lymphocytes exposed to oxidative stress. J Gerontol A Biol Sci Med Sci 66(7):732–740

    PubMed  Google Scholar 

  • Blakeborough MH, Owen RW et al (1989) Free radical generating mechanisms in the colon: their role in the induction and promotion of colorectal cancer? Free Radic Res Commun 6(6):359–367

    CAS  PubMed  Google Scholar 

  • Blazekovic B, Vladimir-Knezevic S et al (2010) Evaluation of antioxidant potential of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’: a comparative study with L. angustifolia Mill. Molecules 15(9):5971–5987

    CAS  PubMed  Google Scholar 

  • Bloomer RJ, Fisher-Wellman KH (2009) Systemic oxidative stress is increased to a greater degree in young, obese women following consumption of a high fat meal. Oxid Med Cell Longev 2(1):19–25

    PubMed Central  PubMed  Google Scholar 

  • Borody TJ, Warren EF et al (2003) Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 37(1):42–47

    PubMed  Google Scholar 

  • Bragg LE, Thompson JS et al (1991) Influence of nutrient delivery on gut structure and function. Nutrition 7(4):237–243

    CAS  PubMed  Google Scholar 

  • Brown K, DeCoffe D et al (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrient 4(8):1095–1119

    CAS  Google Scholar 

  • Busserolles J, Rock E et al (2002) Short-term consumption of a high-sucrose diet has a pro-oxidant effect in rats. Br J Nutr 87(4):337–342

    CAS  PubMed  Google Scholar 

  • Busserolles J, Gueux E et al (2003) Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J Nutr 133(6):1903–1908

    CAS  PubMed  Google Scholar 

  • Bytzer P, Talley NJ et al (2001) Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med 161(16):1989–1996

    CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J et al (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    CAS  PubMed  Google Scholar 

  • Cani PD, Possemiers S et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao W, Vrees MD et al (2004) Hydrogen peroxide contributes to motor dysfunction in ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 286(5):G833–G843

    CAS  PubMed  Google Scholar 

  • Cappello G, Spezzaferro M et al (2007) Peppermint oil (Mintoil) in the treatment of irritable bowel syndrome: a prospective double blind placebo-controlled randomized trial. Dig Liver Dis 39(6):530–536

    CAS  PubMed  Google Scholar 

  • Chadwick VS, Chen W et al (2002) Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 122(7):1778–1783

    PubMed  Google Scholar 

  • Chakder S, Bandyopadhyay A et al (1997) Neuronal NOS gene expression in gastrointestinal myenteric neurons and smooth muscle cells. Am J Physiol 273(6 Pt 1):C1868–C1875

    CAS  PubMed  Google Scholar 

  • Chandrasekharan B, Anitha M et al (2011) Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil 23(2):131–138, e126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiarpotto E, Scavazza A et al (1997) Oxidative damage and transforming growth factor beta 1 expression in pretumoral and tumoral lesions of human intestine. Free Radic Biol Med 22(5):889–894

    CAS  PubMed  Google Scholar 

  • Chohan M, Forster-Wilkins G et al (2008) Determination of the antioxidant capacity of culinary herbs subjected to various cooking and storage processes using the ABTS(*+) radical cation assay. Plant Foods Hum Nutr 63(2):47–52

    CAS  PubMed  Google Scholar 

  • Choi KM, Gibbons SJ et al (2008) Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 135(6):2055–2064, 2064 e2051-2052

    Google Scholar 

  • Chu FF, Esworthy RS (1995) The expression of an intestinal form of glutathione peroxidase (GSHPx-GI) in rat intestinal epithelium. Arch Biochem Biophys 323(2):288–294

    CAS  PubMed  Google Scholar 

  • Chu FF, Doroshow JH et al (1993) Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 268(4):2571–2576

    CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2011) Redox biology of the intestine. Free Radic Res 45:1245–1266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crane BR, Sudhamsu J et al (2010) Bacterial nitric oxide synthases. Annu Rev Biochem 79:445–470

    CAS  PubMed  Google Scholar 

  • Cross CE, van der Vliet A et al (1994) Oxidants, antioxidants, and respiratory tract lining fluids. Environ Health Perspect 102(Suppl 10):185–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Odorico A, Bortolan S et al (2001) Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease. Scand J Gastroenterol 36(12):1289–1294

    PubMed  Google Scholar 

  • Dandona P, Aljada A et al (2001) Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 86(7):3257–3265

    CAS  PubMed  Google Scholar 

  • De Stefano D, Maiuri MC et al (2007) Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol 566(1–3):192–199

    PubMed  Google Scholar 

  • de Vogel-van den Bosch HM, Bunger M et al (2008) PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genomics 9:231

    PubMed Central  PubMed  Google Scholar 

  • Dieterich W, Ehnis T et al (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3(7):797–801

    CAS  PubMed  Google Scholar 

  • Dinan TG, Quigley EM et al (2006) Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology 130(2):304–311

    CAS  PubMed  Google Scholar 

  • Ding X, Hiraku Y et al (2005) Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease. Cancer Sci 96(3):157–163

    CAS  PubMed  Google Scholar 

  • Diosdado B, van Oort E et al (2005) “Coelionomics”: towards understanding the molecular pathology of coeliac disease. Clin Chem Lab Med 43(7):685–695

    CAS  PubMed  Google Scholar 

  • Drew JE, Padidar S et al (2006) Salicylate modulates oxidative stress in the rat colon: a proteomic approach. Biochem Pharmacol 72(2):204–216

    CAS  PubMed  Google Scholar 

  • Duncan C, Li H et al (1997) Protection against oral and gastrointestinal diseases: importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation. Comp Biochem Physiol A Physiol 118(4):939–948

    CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    PubMed Central  PubMed  Google Scholar 

  • Eiseman B, Silen W et al (1958) Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44(5):854–859

    CAS  PubMed  Google Scholar 

  • El Hassani RA, Benfares N et al (2005) Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288(5):G933–G942

    PubMed  Google Scholar 

  • Eshraghian A, Eshraghian H (2011) Interstitial cells of Cajal: a novel hypothesis for the pathophysiology of irritable bowel syndrome. Can J Gastroenterol 25(5):277–279

    PubMed Central  PubMed  Google Scholar 

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57(Suppl 5):779S–785S; discussion 785S–786S

    CAS  PubMed  Google Scholar 

  • Eswaran S, Tack J et al (2011) Food: the forgotten factor in the irritable bowel syndrome. Gastroenterol Clin North Am 40(1):141–162

    PubMed  Google Scholar 

  • Esworthy RS, Aranda R et al (2001) Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 281(3):G848–G855

    CAS  PubMed  Google Scholar 

  • Esworthy RS, Binder SW et al (2003) Microflora trigger colitis in mice deficient in selenium-dependent glutathione peroxidase and induce Gpx2 gene expression. Biol Chem 384(4):597–607

    CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    CAS  PubMed  Google Scholar 

  • Ford AC, Talley NJ (2011) IBS in 2010: advances in pathophysiology, diagnosis and treatment. Nat Rev Gastroenterol Hepatol 8(2):76–78

    PubMed  Google Scholar 

  • Geiszt M, Lekstrom K et al (2003) NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol 171(1):299–306

    CAS  PubMed  Google Scholar 

  • Georgiou CD, Papapostolou I et al (2005) An ultrasensitive fluorescent assay for the in vivo quantification of superoxide radical in organisms. Anal Biochem 347(1):144–151

    CAS  PubMed  Google Scholar 

  • Ghafari H, Yasa N et al (2006) Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum Exp Toxicol 25(6):325–332

    CAS  PubMed  Google Scholar 

  • Ghazanfari G, Minaie B et al (2006) Biochemical and histopathological evidences for beneficial effects of satureja khuzestanica jamzad essential oil on the mouse model of inflammatory bowel diseases. Toxicol Mech Methods 16(7):365–372

    CAS  PubMed  Google Scholar 

  • Ghosh S, Dai C et al (2011) Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 301(1):G39–G49

    CAS  PubMed  Google Scholar 

  • Giacomodonato MN, Goren NB et al (2003) Involvement of intestinal inducible nitric oxide synthase (iNOS) in the early stages of murine salmonellosis. FEMS Microbiol Lett 223(2):231–238

    CAS  PubMed  Google Scholar 

  • Gibson DL, Ma C et al (2008) Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol 10(2):388–403

    CAS  PubMed  Google Scholar 

  • Giongo A, Gano KA et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5(1):82–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glei M, Latunde-Dada GO et al (2002) Iron-overload induces oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. Mutat Res 519(1–2):151–161

    CAS  PubMed  Google Scholar 

  • Godoy JR, Funke M et al (2011) Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta 1810(1):2–92

    CAS  PubMed  Google Scholar 

  • Gray-Donald K, Jacobs-Starkey L et al (2000) Food habits of Canadians: reduction in fat intake over a generation. Can J Public Health 91(5):381–385

    CAS  PubMed  Google Scholar 

  • Graziani G, D’Argenio G et al (2005) Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut 54(2):193–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greco L, Romino R et al (2002) The first large population based twin study of coeliac disease. Gut 50(5):624–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigoleit HG, Grigoleit P (2005) Peppermint oil in irritable bowel syndrome. Phytomedicine 12(8):601–606

    CAS  PubMed  Google Scholar 

  • Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102(39):13855–13860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gusarov I, Starodubtseva M et al (2008) Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283(19):13140–13147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gusarov I, Shatalin K et al (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325(5946):1380–1384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutteridge JM, Smith A (1988) Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem J 256(3):861–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40(2):333–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Clarendon Press, Oxford, UK

    Google Scholar 

  • Hansen SL, Ashwell MS et al (2010) High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. J Dairy Sci 93(2):656–665

    CAS  PubMed  Google Scholar 

  • Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27(2):119–130

    CAS  PubMed  Google Scholar 

  • Hengstermann S, Valentini L et al (2008) Altered status of antioxidant vitamins and fatty acids in patients with inactive inflammatory bowel disease. Clin Nutr 27(4):571–578

    CAS  PubMed  Google Scholar 

  • Hermsdorff HH, Barbosa KB et al (2012) Vitamin C and fibre consumption from fruits and vegetables improves oxidative stress markers in healthy young adults. Br J Nutr 107(8):1119–27

    Google Scholar 

  • Hiraishi H, Terano A et al (1993) Role for mucous glycoprotein in protecting cultured rat gastric mucosal cells against toxic oxygen metabolites. J Lab Clin Med 121(4):570–578

    CAS  PubMed  Google Scholar 

  • Horowitz M, Harding PE et al (1989) Gastric and oesophageal emptying in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 32(3):151–159

    CAS  PubMed  Google Scholar 

  • Horowitz M, Harding PE, Maddox A, Madden GJ, Collins PJ, Chatterton DDU, Wishart J, Shearman DJC (2008) Gastric and oesophageal emptying in insulin-dependent diabetes mellitus. J Gastroenterol Hepatol 1(2):97–113

    Google Scholar 

  • Huycke MM, Joyce W et al (1996) Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. J Infect Dis 173(3):743–746

    CAS  PubMed  Google Scholar 

  • Innis SM (2007) Dietary lipids in early development: relevance to obesity, immune and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 14(5):359–364

    CAS  PubMed  Google Scholar 

  • Izbeki F, Asuzu DT et al (2010) Loss of Kitlow progenitors, reduced stem cell factor and high oxidative stress underlie gastric dysfunction in progeric mice. J Physiol 588(Pt 16):3101–3117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahanshahi G, Motavasel V et al (2004) Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig Dis Sci 49(11–12):1752–1757

    CAS  PubMed  Google Scholar 

  • Jett BD, Huycke MM et al (1994) Virulence of enterococci. Clin Microbiol Rev 7(4):462–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadiiska MB, Hanna PM et al (1992) In vivo evidence of hydroxyl radical formation after acute copper and ascorbic acid intake: electron spin resonance spin-trapping investigation. Mol Pharmacol 42(4):723–729

    CAS  PubMed  Google Scholar 

  • Kadiiska MB, Morrow JD et al (1998) Identification of free radical formation and F2-isoprostanes in vivo by acute Cr(VI) poisoning. Chem Res Toxicol 11(12):1516–1520

    CAS  PubMed  Google Scholar 

  • Kamizato M, Nishida K et al (2009) Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 44(12):1172–1184

    CAS  PubMed  Google Scholar 

  • Kashyap P, Farrugia G (2011) Oxidative stress: key player in gastrointestinal complications of diabetes. Neurogastroenterol Motil 23(2):111–114

    CAS  PubMed  Google Scholar 

  • Kashyap PC, Choi KM et al (2010) Carbon monoxide reverses diabetic gastroparesis in NOD mice. Am J Physiol Gastrointest Liver Physiol 298(6):G1013–G1019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaukinen K, Partanen J et al (2002) HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol 97(3):695–699

    PubMed  Google Scholar 

  • Keshavarzian A, Farhadi A et al (2009) Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 50(3):538–547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kikugawa K, Hiramoto K et al (1998) Identification of hydroxyhydroquinone in coffee as a generator of reactive oxygen species that break DNA single strands. Mutat Res-Gen Toxicol Environ Mutagen 419(1–3):43–51

    Google Scholar 

  • Kim SY, Jeitner TM et al (2002) Transglutaminases in disease. Neurochem Int 40(1):85–103

    CAS  PubMed  Google Scholar 

  • Koch TR, Yuan LX et al (2000) Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig Dis Sci 45(9):1814–1819

    CAS  PubMed  Google Scholar 

  • Kolgazi M, Jahovic N et al (2007) Alpha-lipoic acid modulates gut inflammation induced by trinitrobenzene sulfonic acid in rats. J Gastroenterol Hepatol 22(11):1859–1865

    CAS  PubMed  Google Scholar 

  • Kraus S, Arber N (2009) Inflammation and colorectal cancer. Curr Opin Pharmacol 9(4):405–410

    CAS  PubMed  Google Scholar 

  • Kruidenier L, Verspaget HW (2002) Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease–radicals or ridiculous? Aliment Pharmacol Ther 16(12):1997–2015

    CAS  PubMed  Google Scholar 

  • Kullisaar T, Songisepp E et al (2003) Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90(2):449–456

    CAS  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    CAS  PubMed  Google Scholar 

  • LeBlanc JG, del Carmen S et al (2011) Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol 151(3):287–293

    CAS  PubMed  Google Scholar 

  • Lee EK, Jung KJ et al (2010) Molecular basis for age-related changes in ileum: involvement of Bax/caspase-dependent mitochondrial apoptotic signaling. Exp Gerontol 45(12):970–976

    CAS  PubMed  Google Scholar 

  • Levy E, Rizwan Y et al (2000) Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. Am J Clin Nutr 71(3):807–815

    CAS  PubMed  Google Scholar 

  • Ley RE, Backhed F et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liebregts T, Adam B et al (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132(3):913–920

    CAS  PubMed  Google Scholar 

  • Lindley KJ, Goss-Sampson MA et al (1994) Lipid peroxidation and electrogenic ion transport in the jejunum of the vitamin E deficient rat. Gut 35(1):34–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long EK, Picklo MJ Sr (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic Biol Med 49(1):1–8

    CAS  PubMed  Google Scholar 

  • Longstreth GF, Thompson WG et al (2006) Functional bowel disorders. Gastroenterology 130(5):1480–1491

    PubMed  Google Scholar 

  • Lu WZ, Song GH et al (2009) The effects of melatonin on colonic transit time in normal controls and IBS patients. Dig Dis Sci 54(5):1087–1093

    CAS  PubMed  Google Scholar 

  • Luciani A, Villella VR et al (2010) Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa. Gut 59(3):311–319

    PubMed  Google Scholar 

  • Lundberg JO, Weitzberg E et al (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167

    CAS  PubMed  Google Scholar 

  • Luo C, Urgard E et al (2011) The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging. Med Hypotheses 77(2):174–178

    CAS  PubMed  Google Scholar 

  • Lupp C, Robertson ML et al (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2(3):204

    CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S et al (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35(2):180–187

    CAS  PubMed  Google Scholar 

  • Maes M (2009) Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin Psychiatry 22(1):75–83

    PubMed  Google Scholar 

  • Maes M, Kubera M et al (2011) Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett 32(1):7–24

    CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  • Mane J, Pedrosa E et al (2009) Partial replacement of dietary (n-6) fatty acids with medium-chain triglycerides decreases the incidence of spontaneous colitis in interleukin-10-deficient mice. J Nutr 139(3):603–610

    CAS  PubMed  Google Scholar 

  • McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res 20(8):619–633

    CAS  PubMed  Google Scholar 

  • Miller RA, Britigan BE (1995) The formation and biologic significance of phagocyte-derived oxidants. J Investig Med 43(1):39–49

    CAS  PubMed  Google Scholar 

  • Mirza A, Liu SL et al (1997) A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am J Physiol 272(2 Pt 1):G281–G288

    CAS  PubMed  Google Scholar 

  • Mohanty P, Hamouda W et al (2000) Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85(8):2970–2973

    CAS  PubMed  Google Scholar 

  • Mohanty P, Ghanim H et al (2002) Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 75(4):767–772

    CAS  PubMed  Google Scholar 

  • Molberg O, Mcadam SN et al (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease (vol 4, pg 713, 1998). Nat Med 4(8):974–974

    CAS  Google Scholar 

  • Mukhopadhyay P, Zheng M et al (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci USA 101(3):745–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano MM (2002) Induction of ResDE-dependent gene expression in Bacillus subtilis in response to nitric oxide and nitrosative stress. J Bacteriol 184(6):1783–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto N, Torres MI et al (2000) Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig Dis Sci 45(9):1820–1827

    CAS  PubMed  Google Scholar 

  • Nilsen EM, Jahnsen FL et al (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115(3):551–563

    CAS  PubMed  Google Scholar 

  • Nunoshiba T, deRojas-Walker T et al (1993) Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90(21):9993–9997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obtulowicz T, Swoboda M et al (2010) Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagenesis 25(5):463–471

    CAS  PubMed  Google Scholar 

  • Odetti P, Valentini S et al (1998) Oxidative stress in subjects affected by celiac disease. Free Radic Res 29(1):17–24

    CAS  PubMed  Google Scholar 

  • Ohyashiki T, Sakata N et al (1991) Fluorescence characteristics of peroxidation products in porcine intestinal brush-border membranes. Arch Biochem Biophys 284(2):375–380

    CAS  PubMed  Google Scholar 

  • Palaniyappan A, Alphonse R (2011) Immunomodulatory effect of DL-alpha-lipoic acid in aged rats. Exp Gerontol 46(9):709–715

    CAS  PubMed  Google Scholar 

  • Palffy R, Gardlik R et al (2011) Salmonella-mediated gene therapy in experimental colitis in mice. Exp Biol Med (Maywood) 236(2):177–183

    CAS  Google Scholar 

  • Pamplona R (2011) Mitochondrial DNA damage and animal longevity: insights from comparative studies. J Aging Res 2011:807108

    PubMed Central  PubMed  Google Scholar 

  • Panteli ES, Fligou F et al (2011) Quantification of superoxide radical production in 4 vital organs of rats subjected to hemorrhagic shock. Am J Emerg Med 30(3):476–80

    Google Scholar 

  • Parejo I, Viladomat F et al (2002) Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J Agric Food Chem 50(23):6882–6890

    CAS  PubMed  Google Scholar 

  • Park SY, Lee JS et al (2008) Inhibitory effect of simvastatin on the TNF-alpha- and angiotensin II-induced monocyte adhesion to endothelial cells is mediated through the suppression of geranylgeranyl isoprenoid-dependent ROS generation. Arch Pharm Res 31(2):195–204

    CAS  PubMed  Google Scholar 

  • Pascua P, Camello-Almaraz C et al (2011) Melatonin, and to a lesser extent growth hormone, restores colonic smooth muscle physiology in old rats. J Pineal Res 51(4):405–15

    Google Scholar 

  • Patel SM, Stason WB et al (2005) The placebo effect in irritable bowel syndrome trials: a meta-analysis. Neurogastroenterol Motil 17(3):332–340

    CAS  PubMed  Google Scholar 

  • Porta R, Gentile V et al (1990) Cereal dietary proteins with sites for cross-linking by transglutaminase. Phytochemistry 29(9):2801–2804

    CAS  Google Scholar 

  • Qiu X, Brown K et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667

    CAS  PubMed  Google Scholar 

  • Ramarao N, Gray-Owen SD et al (2000) Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Mol Microbiol 38(1):103–113

    CAS  PubMed  Google Scholar 

  • Rezaie A, Ghorbani F et al (2006) Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-beta 1 in relation to disease activity in Crohn’s disease patients. Ann N Y Acad Sci 1091:110–122

    CAS  PubMed  Google Scholar 

  • Rezaie A, Parker RD et al (2007) Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 52(9):2015–2021

    PubMed  Google Scholar 

  • Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883

    PubMed  Google Scholar 

  • Richardson AR, Soliven KC et al (2009) The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 5(5):e1000451

    PubMed Central  PubMed  Google Scholar 

  • Rietveld A, Wiseman S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133(10):3285S–3292S

    CAS  PubMed  Google Scholar 

  • Rivabene R, Mancini E et al (1999) In vitro cytotoxic effect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line is associated with intracellular oxidative imbalance: implications for coeliac disease. Biochim Biophys Acta-Mol Basis Dis 1453(1):152–160

    CAS  Google Scholar 

  • Roesch LF, Lorca GL et al (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3(5):536–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rokutan K, Kawahara T et al (2008) Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol 30(3):315–327

    CAS  PubMed  Google Scholar 

  • Rosa EF, Silva AC et al (2005) Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. J Appl Physiol 99(4):1569–1575

    PubMed  Google Scholar 

  • Saha L, Malhotra S et al (2007) A preliminary study of melatonin in irritable bowel syndrome. J Clin Gastroenterol 41(1):29–32

    CAS  PubMed  Google Scholar 

  • Saito YA (2011) The role of genetics in IBS. Gastroenterol Clin North Am 40(1):45–67

    PubMed Central  PubMed  Google Scholar 

  • Salmon AB, Richardson A et al (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salonen A, de Vos WM et al (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156(Pt 11):3205–3215

    CAS  PubMed  Google Scholar 

  • Schepens MA, Vink C et al (2011) Supplemental antioxidants do not ameliorate colitis development in HLA-B27 transgenic rats despite extremely low glutathione levels in colonic mucosa. Inflamm Bowel Dis 17(10):2065–2075

    PubMed  Google Scholar 

  • Schmidt KN, Amstad P et al (1995) The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol 2(1):13–22

    CAS  PubMed  Google Scholar 

  • Seksik P, Rigottier-Gois L et al (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52(2):237–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sengul N, Isik S et al (2011) The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Dig Dis Sci 56(3):707–714

    PubMed  Google Scholar 

  • Sesink AL, Termont DS et al (1999) Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res 59(22):5704–5709

    CAS  PubMed  Google Scholar 

  • Shah PC, Brolin RE et al (1999) Effect of aging on intestinal ischemia and reperfusion injury. Mech Ageing Dev 107(1):37–50

    CAS  PubMed  Google Scholar 

  • Shi Y, Buffenstein R et al (2010) Comparative studies of oxidative stress and mitochondrial function in aging. Integr Comp Biol 50(5):869–879

    PubMed  Google Scholar 

  • Shimizu M, Son DO (2007) Food-derived peptides and intestinal functions. Curr Pharm Des 13(9):885–895

    CAS  PubMed  Google Scholar 

  • Sies H, Stahl W et al (2005) Nutritional, dietary and postprandial oxidative stress. J Nutr 135(5):969–972

    CAS  PubMed  Google Scholar 

  • Sigal LH (2006) Basic science for the clinician 39: NF-kappaB-function, activation, control, and consequences. J Clin Rheumatol 12(4):207–211

    PubMed  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70(Suppl 3):560S–569S

    CAS  PubMed  Google Scholar 

  • Simopoulos AP, Leaf A et al (1999) Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann Nutr Metab 43(2):127–130

    CAS  PubMed  Google Scholar 

  • Sobko T, Reinders CI et al (2005) Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide 13(4):272–278

    CAS  PubMed  Google Scholar 

  • Sollid LM (2005) Celiac disease as a model of gastrointestinal inflammation. J Pediatr Gastroenterol Nutr 40(Suppl 1):S41–S42

    PubMed  Google Scholar 

  • Song GH, Leng PH et al (2005) Melatonin improves abdominal pain in irritable bowel syndrome patients who have sleep disturbances: a randomised, double blind, placebo controlled study. Gut 54(10):1402–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Statistics C (2006) Food statistics 2005. from http://www.statcan.gc.ca/pub/21-020-x/21-020-x2005002-eng.pdf

  • Stojiljkovic V, Todorovic A et al (2009) Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease. Clin Biochem 42(13–14):1431–1437

    CAS  PubMed  Google Scholar 

  • Stojiljkovic V, Pejic S et al (2012) Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients. An Acad Bras Cienc 84(1):175–184

    CAS  PubMed  Google Scholar 

  • Strus M, Gosiewski T et al (2009a) A role of hydrogen peroxide producing commensal bacteria present in colon of adolescents with inflammatory bowel disease in perpetuation of the inflammatory process. J Physiol Pharmacol 60(Suppl 6):49–54

    PubMed  Google Scholar 

  • Strus M, Janczyk A et al (2009b) Effect of hydrogen peroxide of bacterial origin on apoptosis and necrosis of gut mucosa epithelial cells as a possible pathomechanism of inflammatory bowel disease and cancer. J Physiol Pharmacol 60(Suppl 6):55–60

    PubMed  Google Scholar 

  • Suh YA, Arnold RS et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748):79–82

    CAS  PubMed  Google Scholar 

  • Sun D, Muthukumar AR et al (2001) Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Immunol 8(5):1003–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szeto YT, Kwok TC et al (2004) Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition 20(10):863–866

    CAS  PubMed  Google Scholar 

  • Tang Y, Forsyth CB et al (2009) Oats supplementation prevents alcohol-induced gut leakiness in rats by preventing alcohol-induced oxidative tissue damage. J Pharmacol Exp Ther 329(3):952–958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tashima K, Fujita A et al (2000) Aggravation of ischemia/reperfusion-induced gastric lesions in streptozotocin-diabetic rats. Life Sci 67(14):1707–1718

    CAS  PubMed  Google Scholar 

  • Tejada-Simon MV, Pestka JJ (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot 62(12):1435–1444

    CAS  PubMed  Google Scholar 

  • Thabane M, Kottachchi DT et al (2007) Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther 26(4):535–544

    CAS  PubMed  Google Scholar 

  • Tham DM, Whitin JC et al (1998) Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract. Am J Physiol 275(6 Pt 1):G1463–G1471

    CAS  PubMed  Google Scholar 

  • Thomsen L, Robinson TL et al (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4(7):848–851

    CAS  PubMed  Google Scholar 

  • Tjonneland A, Overvad K et al (2009) Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case–control study within a European prospective cohort study. Gut 58(12):1606–1611

    PubMed  Google Scholar 

  • Tsai WC, Li YH et al (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci (Lond) 106(3):315–319

    CAS  Google Scholar 

  • Tunali S, Yanardag R (2006) Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacol Res 53(3):271–277

    CAS  PubMed  Google Scholar 

  • Tuzun A, Erdil A et al (2002) Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin Biochem 35(7):569–572

    CAS  PubMed  Google Scholar 

  • Valladares R, Sankar D et al (2010) Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One 5(5):e10507

    PubMed Central  PubMed  Google Scholar 

  • Vallance BA, Deng W et al (2002) Modulation of inducible nitric oxide synthase expression by the attaching and effacing bacterial pathogen citrobacter rodentium in infected mice. Infect Immun 70(11):6424–6435

    CAS  PubMed Central  PubMed  Google Scholar 

  • van de Wal Y, Kooy Y et al (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 161(4):1585–1588

    PubMed  Google Scholar 

  • van der Vliet A, Tuinstra TJ et al (1989) Modulation of oxidative stress in the gastrointestinal tract and effect on rat intestinal motility. Biochem Pharmacol 38(17):2807–2818

    PubMed  Google Scholar 

  • van Nood E, Speelman P et al (2009) Struggling with recurrent Clostridium difficile infections: is donor faeces the solution? Euro Surveill 14(34)

    Google Scholar 

  • van Oostrom AJ, Sijmonsma TP et al (2003) Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 44(3):576–583

    PubMed  Google Scholar 

  • Venderley AM, Campbell WW (2006) Vegetarian diets: nutritional considerations for athletes. Sports Med 36(4):293–305

    PubMed  Google Scholar 

  • Wacklin P, Kaukinen K et al (2013) The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis 19(5):934–941

    PubMed  Google Scholar 

  • Wang J, Chen L et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138(6):1025–1032

    CAS  PubMed  Google Scholar 

  • Watkins CC, Sawa A et al (2000) Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J Clin Invest 106(3):373–384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wen L, Ley RE et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  • West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17(3):171–180

    CAS  PubMed  Google Scholar 

  • Weston AP, Biddle WL et al (1993) Terminal ileal mucosal mast cells in irritable bowel syndrome. Dig Dis Sci 38(9):1590–1595

    CAS  PubMed  Google Scholar 

  • Westphal S, Kastner S et al (2004) Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. Am J Clin Nutr 80(2):284–290

    CAS  PubMed  Google Scholar 

  • Whidden MA, Kirichenko N et al (2011) Lifelong caloric restriction prevents age-induced oxidative stress in the sympathoadrenal system of Fischer 344 x Brown Norway rats. Biochem Biophys Res Commun 408(3):454–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Ma C et al (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61(1):69–78

    CAS  PubMed  Google Scholar 

  • Xiao Y, Cui J et al (2010) Effects of duodenal redox status on calcium absorption and related genes expression in high-fat diet-fed mice. Nutrition 26(11–12):1188–1194

    CAS  PubMed  Google Scholar 

  • Zhong W, McClain CJ et al (2010) The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 298(5):G625–G633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler D, Nowak H et al (2004) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med 21(2):114–121

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna L. Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brown, K. et al. (2014). Free Radicals and Gastrointestinal Disorders. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_137

Download citation

Publish with us

Policies and ethics