Skip to main content

Antioxidants and Osteoarthritis

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Oxidative stress produces reactive oxygen species (ROS) that play key roles in the development of osteoarthritis (OA) and rheumatoid arthritis (RA). Metabolic reactions in chondrocytes and synoviocytes produce free radicals, ROS, and their derivatives. These dangerous chemicals can accumulate in the synovial joint, causing extensive structural damage, inflammation, and cell death. Antioxidants are naturally occurring reducing agents capable of inhibiting ROS formation, scavenging free radicals, and removing ROS derivatives. Antioxidant vitamins have major roles in modulating oxidative stress, regulating immune responses, and contributing to cell differentiation. Vitamin C (ascorbic acid), vitamin E, thiols (glutathione), and plant polyphenols have the capacity to neutralize ROS in joints and decrease the oxidative stress associated with the progression of arthritis. There is a pressing need to understand the contribution of antioxidants to OA, because they may provide important insight into ameliorating the initiation and progression of the disease. The objective of this chapter is to examine ROS biology at the cellular and tissue levels in the synovial joint with special emphasis on the biological effects of ROS and naturally occurring antioxidants on chondrocytes. We summarize and critically appraise the information published about antioxidants and their potential for preventing and treating arthritic diseases such as OA. The expectation is to relate the potential importance of dietary antioxidants and their supplementation in OA patients. This knowledge will improve the design of future clinical trials and interventional studies on OA and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson SB (2008) Osteoarthritis and nitric oxide. Osteoarthr Cartil 16(Suppl 2):S15–S20

    PubMed  Google Scholar 

  • Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227

    PubMed Central  PubMed  Google Scholar 

  • Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74:324–329

    CAS  PubMed  Google Scholar 

  • Aigner T, Rose J, Martin J, Buckwalter J (2004) Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 7:134–145

    CAS  PubMed  Google Scholar 

  • Airley RE, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53:233–256

    CAS  PubMed  Google Scholar 

  • Amin AR, Abramson SB (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 10:263–268

    CAS  PubMed  Google Scholar 

  • Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35:401–404

    CAS  PubMed  Google Scholar 

  • Astuya A, Caprile T, Castro M, Salazar K, Garcia Mde L, Reinicke K, Rodriguez F, Vera JC, Millan C, Ulloa V, Low M, Martinez F, Nualart F (2005) Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. J Neurosci Res 79:146–156

    CAS  PubMed  Google Scholar 

  • Baker MS, Feigan J, Lowther DA (1988) Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. J Rheumatol 15:670–677

    CAS  PubMed  Google Scholar 

  • Besse JL, Gadeyne S, Galand-Desme S, Lerat JL, Moyen B (2009) Effect of vitamin C on prevention of complex regional pain syndrome type I in foot and ankle surgery. Foot Ankle Surg 15:179–182

    PubMed  Google Scholar 

  • Biesalski HK (2008) Parenteral ascorbic acid as a key for regulating microcirculation in critically ill. Crit Care Med 36:2466–2468

    PubMed  Google Scholar 

  • Biesalski HK, Brummer RJ, Konig J, O’Connell MA, Ovesen L, Rechkemmer G, Stos K, Thurnham DI (2003) Micronutrient deficiencies. Hohenheim consensus conference. Eur J Nutr 42:353–363

    CAS  PubMed  Google Scholar 

  • Biesalski HK, Tinz J (2008) Nutritargeting. Adv Food Nutr Res 54:179–217

    CAS  PubMed  Google Scholar 

  • Blanco FJ, Lopez-Armada MJ, Maneiro E (2004) Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4:715–728

    CAS  PubMed  Google Scholar 

  • Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169

    CAS  PubMed  Google Scholar 

  • Brand C, Snaddon J, Bailey M, Cicuttini F (2001) Vitamin E is ineffective for symptomatic relief of knee osteoarthritis: a six month double blind, randomised, placebo controlled study. Ann Rheum Dis 60:946–949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  • Calabrese EJ (2005) Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 35:463–582

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    CAS  PubMed  Google Scholar 

  • Canter PH, Wider B, Ernst E (2007) The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology (Oxford) 46:1223–1233

    CAS  Google Scholar 

  • Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48:3419–3430

    PubMed  Google Scholar 

  • Castro MA, Angulo C, Brauchi S, Nualart F, Concha II (2008) Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation. Pflugers Arch 457:519–528

    CAS  PubMed  Google Scholar 

  • Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7:271–275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corthesy-Theulaz I, den Dunnen JT, Ferre P, Geurts JM, Muller M, van Belzen N, van Ommen B (2005) Nutrigenomics: the impact of biomics technology on nutrition research. Ann Nutr Metab 49:355–365

    CAS  PubMed  Google Scholar 

  • Deahl ST 2nd, Oberley LW, Oberley TD, Elwell JH (1992) Immunohistochemical identification of superoxide dismutases, catalase, and glutathione-S-transferases in rat femora. J Bone Miner Res 7:187–198

    CAS  PubMed  Google Scholar 

  • Di Paola R, Cuzzocrea S (2008) Predictivity and sensitivity of animal models of arthritis. Autoimmun Rev 8:73–75

    PubMed  Google Scholar 

  • Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6:365–406

    CAS  PubMed  Google Scholar 

  • Feelisch M (2008) The chemical biology of nitric oxide – an outsider’s reflections about its role in osteoarthritis. Osteoarthr Cartil 16(Suppl 2):S3–S13

    PubMed  Google Scholar 

  • Findlay DM (2007) Vascular pathology and osteoarthritis. Rheumatology (Oxford) 46:1763–1768

    CAS  Google Scholar 

  • Fragonas E, Pollesello P, Mlinarik V, Toffanin R, Grando C, Godeas C, Vittur F (1998) Sensitivity of chondrocytes of growing cartilage to reactive oxygen species. Biochim Biophys Acta 1425:103–111

    CAS  PubMed  Google Scholar 

  • Gabay O, Hall DJ, Berenbaum F, Henrotin Y, Sanchez C (2008) Osteoarthritis and obesity: experimental models. Joint Bone Spine 75:675–679

    PubMed Central  PubMed  Google Scholar 

  • Gerster H (1997) Vitamin A – functions, dietary requirements and safety in humans. Int J Vitam Nutr Res 67:71–90

    CAS  PubMed  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    CAS  PubMed  Google Scholar 

  • Goggs R, Carter SD, Schulze-Tanzil G, Shakibaei M, Mobasheri A (2003) Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. Vet J 166:140–158

    CAS  PubMed  Google Scholar 

  • Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    CAS  PubMed  Google Scholar 

  • Griffin TM, Guilak F (2008) Why is obesity associated with osteoarthritis? Insights from mouse models of obesity. Biorheology 45:387–398

    PubMed Central  PubMed  Google Scholar 

  • He SJ, Hou JF, Dai YY, Zhou ZL, Deng YF (2011) N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J Appl Toxicol 32(12):980–985

    PubMed  Google Scholar 

  • Henrotin Y, Kurz B (2007) Antioxidant to treat osteoarthritis: dream or reality? Curr Drug Targets 8:347–357

    CAS  PubMed  Google Scholar 

  • Henrotin Y, Deby-Dupont G, Deby C, Franchimont P, Emerit I (1992) Active oxygen species, articular inflammation and cartilage damage. EXS 62:308–322

    CAS  PubMed  Google Scholar 

  • Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 11:747–755

    CAS  PubMed  Google Scholar 

  • Henrotin Y, Clutterbuck AL, Allaway D, Lodwig EM, Harris P, Mathy-Hartert M, Shakibaei M, Mobasheri A (2010) Biological actions of curcumin on articular chondrocytes. Osteoarthr Cartil 18:141–149

    CAS  PubMed  Google Scholar 

  • Hinds TS, West WL, Knight EM (1997) Carotenoids and retinoids: a review of research, clinical, and public health applications. J Clin Pharmacol 37:551–558

    CAS  PubMed  Google Scholar 

  • Hiran TS, Moulton PJ, Hancock JT (1997) Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 23:736–743

    CAS  PubMed  Google Scholar 

  • Hiran TS, Moulton PJ, Hancock JT (1998) In situ detection of superoxide anions within porcine articular cartilage. Br J Biomed Sci 55:199–203

    CAS  PubMed  Google Scholar 

  • Iannone F, Lapadula G (2010) Obesity and inflammation – targets for OA therapy. Curr Drug Targets 11:586–598

    CAS  PubMed  Google Scholar 

  • Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588

    CAS  PubMed  Google Scholar 

  • Jaiman A, Lokesh M, Neogi DS (2011) Effect of vitamin C on prevention of complex regional pain syndrome type I in foot and ankle surgery. Foot Ankle Surg 17:207

    PubMed  Google Scholar 

  • Jaswal S, Mehta HC, Sood AK, Kaur J (2003) Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 338:123–129

    CAS  PubMed  Google Scholar 

  • Jha P, Flather M, Lonn E, Farkouh M, Yusuf S (1995) The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical trial data. Ann Intern Med 123:860–872

    CAS  PubMed  Google Scholar 

  • Kapoor S (2012) Vitamin C and its emerging role in pain management: beneficial effects in pain conditions besides post herpetic neuralgia. Korean J Pain 25:200–201

    PubMed Central  PubMed  Google Scholar 

  • Konstantinidou V, Covas MI, Munoz-Aguayo D, Khymenets O, de la Torre R, Saez G, Tormos Mdel C, Toledo E, Marti A, Ruiz-Gutierrez V, Ruiz Mendez MV, Fito M (2010) In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J 24:2546–2557

    CAS  PubMed  Google Scholar 

  • Lafont JE (2010) Lack of oxygen in articular cartilage: consequences for chondrocyte biology. Int J Exp Pathol 91:99–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levick JR (1995) Microvascular architecture and exchange in synovial joints. Microcirculation 2:217–233

    CAS  PubMed  Google Scholar 

  • Li WQ, Dehnade F, Zafarullah M (2000) Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 275:789–794

    CAS  PubMed  Google Scholar 

  • Loeser RF (2011) Aging and osteoarthritis. Curr Opin Rheumatol 23:492–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12:211

    PubMed Central  PubMed  Google Scholar 

  • Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    CAS  PubMed  Google Scholar 

  • May JM (1998) Ascorbate function and metabolism in the human erythrocyte. Front Biosci 3:d1–d10

    CAS  PubMed  Google Scholar 

  • McAlindon TE, Jacques P, Zhang Y, Hannan MT, Aliabadi P, Weissman B, Rush D, Levy D, Felson DT (1996) Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheum 39:648–656

    CAS  PubMed  Google Scholar 

  • McGregor GP, Biesalski HK (2006) Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 9:697–703

    CAS  PubMed  Google Scholar 

  • McNulty AL, Stabler TV, Vail TP, McDaniel GE, Kraus VB (2005a) Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint. Arthritis Rheum 52:2676–2685

    CAS  PubMed  Google Scholar 

  • McNulty AL, Vail TP, Kraus VB (2005b) Chondrocyte transport and concentration of ascorbic acid is mediated by SVCT2. Biochim Biophys Acta 1712:212–221

    CAS  PubMed  Google Scholar 

  • Meister A (1994a) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269:9397–9400

    CAS  PubMed  Google Scholar 

  • Meister A (1994b) Glutathione, ascorbate, and cellular protection. Cancer Res 54:1969s–1975s

    CAS  PubMed  Google Scholar 

  • Michiels C, Raes M, Zachary MD, Delaive E, Remacle J (1988) Microinjection of antibodies against superoxide dismutase and glutathione peroxidase. Exp Cell Res 179:581–589

    CAS  PubMed  Google Scholar 

  • Mobasheri A (2002) Role of chondrocyte death and hypocellularity in ageing human articular cartilage and the pathogenesis of osteoarthritis. Med Hypotheses 58:193–197

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF, Trujillo E, Ferraz I, Shakibaei M, Martin-Vasallo P (2002) Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol Histopathol 17:1239–1267

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Bondy CA, Moley K, Mendes AF, Rosa SC, Richardson SM, Hoyland JA, Barrett-Jolley R, Shakibaei M (2008) Facilitative glucose transporters in articular chondrocytes. Expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines. Adv Anat Embryol Cell Biol 200(1):1–84

    PubMed  Google Scholar 

  • Montel-Hagen A, Sitbon M, Taylor N (2009) Erythroid glucose transporters. Curr Opin Hematol 16:165–172

    CAS  PubMed  Google Scholar 

  • Moulton PJ, Hiran TS, Goldring MB, Hancock JT (1997) Detection of protein and mRNA of various components of the NADPH oxidase complex in an immortalized human chondrocyte line. Br J Rheumatol 36:522–529

    CAS  PubMed  Google Scholar 

  • Moulton PJ, Goldring MB, Hancock JT (1998) NADPH oxidase of chondrocytes contains an isoform of the gp91phox subunit. Biochem J 329(Pt 3):449–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muhlhofer A, Mrosek S, Schlegel B, Trommer W, Rozario F, Bohles H, Schremmer D, Zoller WG, Biesalski HK (2004) High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr 58:1151–1158

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Arai Y, Mazda O, Kishida T, Takahashi KA, Sakao K, Saito M, Honjo K, Imanishi J, Kubo T (2010) N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res 28:156–163

    CAS  PubMed  Google Scholar 

  • Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126:659–662

    CAS  PubMed  Google Scholar 

  • Oliver JE, Silman AJ (2009) What epidemiology has told us about risk factors and aetiopathogenesis in rheumatic diseases. Arthritis Res Ther 11:223

    PubMed Central  PubMed  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35

    CAS  PubMed  Google Scholar 

  • Parke DV, Sapota A (1996) Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health 9:331–340

    CAS  PubMed  Google Scholar 

  • Peregoy J, Wilder FV (2011) The effects of vitamin C supplementation on incident and progressive knee osteoarthritis: a longitudinal study. Public Health Nutr 14:709–715

    PubMed  Google Scholar 

  • Pfander D, Gelse K (2007) Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol 19:457–462

    CAS  PubMed  Google Scholar 

  • Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    CAS  PubMed  Google Scholar 

  • Rattan SI (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    PubMed  Google Scholar 

  • Rattan SI, Ali RE (2007) Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci 1100:424–430

    CAS  PubMed  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51:327–336

    CAS  PubMed  Google Scholar 

  • Rosenbaum CC, O’Mathuna DP, Chavez M, Shields K (2010) Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern Ther Health Med 16:32–40

    PubMed  Google Scholar 

  • Ross AC, Gardner EM (1994) The function of vitamin A in cellular growth and differentiation, and its roles during pregnancy and lactation. Adv Exp Med Biol 352:187–200

    CAS  PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625–635

    CAS  PubMed  Google Scholar 

  • Semba RD (1998) The role of vitamin A and related retinoids in immune function. Nutr Rev 56:S38–S48

    CAS  PubMed  Google Scholar 

  • Siegel GJ, Agranoff BW, Albers RW et al. (eds) (1999) Basic neurochemistry: molecular, cellularand medical aspects, 6th edn. Lippincott-Raven, Philadelphia.

    Google Scholar 

  • Sowers M, Lachance L (1999) Vitamins and arthritis. The roles of vitamins A, C, D, and E. Rheum Dis Clin North Am 25:315–332

    CAS  PubMed  Google Scholar 

  • Stucki G, Liang MH, Stucki S, Bruhlmann P, Michel BA (1995) A self-administered rheumatoid arthritis disease activity index (RADAI) for epidemiologic research. Psychometric properties and correlation with parameters of disease activity. Arthritis Rheum 38:795–798

    CAS  PubMed  Google Scholar 

  • Studer RK (2004) Nitric oxide decreases IGF-1 receptor function in vitro; glutathione depletion enhances this effect in vivo. Osteoarthr Cartil 12:863–869

    CAS  PubMed  Google Scholar 

  • Sutton S, Clutterbuck A, Harris P, Gent T, Freeman S, Foster N, Barrett-Jolley R, Mobasheri A (2009) The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 179:10–24

    CAS  PubMed  Google Scholar 

  • Terkeltaub R, Johnson K, Murphy A, Ghosh S (2002) Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1:301–319

    CAS  PubMed  Google Scholar 

  • Troadec MB, Kaplan J (2008) Some vertebrates go with the GLO. Cell 132:921–922

    CAS  PubMed  Google Scholar 

  • Tschopp J (2011) Mitochondria: sovereign of inflammation? Eur J Immunol 41:1196–1202

    CAS  PubMed  Google Scholar 

  • Ueno T, Yamada M, Sugita Y, Ogawa T (2011) N-acetyl cysteine protects TMJ chondrocytes from oxidative stress. J Dent Res 90:353–359

    CAS  PubMed  Google Scholar 

  • Vaillancourt F, Fahmi H, Shi Q, Lavigne P, Ranger P, Fernandes JC, Benderdour M (2008) 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 10:R107

    PubMed Central  PubMed  Google Scholar 

  • van Ommen B (2004) Nutrigenomics: exploiting systems biology in the nutrition and health arenas. Nutrition 20:4–8

    PubMed  Google Scholar 

  • van Ommen B (2007) Personalized nutrition from a health perspective: luxury or necessity? Genes Nutr 2:3–4

    PubMed Central  PubMed  Google Scholar 

  • van Ommen B, Stierum R (2002) Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol 13:517–521

    PubMed  Google Scholar 

  • van Ommen B, Keijer J, Heil SG, Kaput J (2009) Challenging homeostasis to define biomarkers for nutrition related health. Mol Nutr Food Res 53:795–804

    PubMed  Google Scholar 

  • Wang Y, Hodge AM, Wluka AE, English DR, Giles GG, O’Sullivan R, Forbes A, Cicuttini FM (2007) Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects: a cross-sectional study. Arthritis Res Ther 9:R66

    PubMed Central  PubMed  Google Scholar 

  • Wiseman H (1993) Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 326:285–288

    CAS  PubMed  Google Scholar 

  • Wluka AE, Stuckey S, Brand C, Cicuttini FM (2002) Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. J Rheumatol 29:2585–2591

    CAS  PubMed  Google Scholar 

  • Wolf G (1996) The mechanism of uptake of ascorbic acid into osteoblasts and leukocytes. Nutr Rev 54:150–152

    CAS  PubMed  Google Scholar 

  • Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed Central  PubMed  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    CAS  PubMed  Google Scholar 

  • Ziskoven C, Jager M, Kircher J, Patzer T, Bloch W, Brixius K, Krauspe R (2011) Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Can J Physiol Pharmacol 89:455–466

    CAS  PubMed  Google Scholar 

  • Zollinger PE, Ellis ML, Unal H, Tuinebreijer WE (2008) Clinical outcome of cementless semi-constrained trapeziometacarpal arthroplasty, and possible effect of vitamin C on the occurrence of complex regional pain syndrome. Acta Orthop Belg 74:317–322

    PubMed  Google Scholar 

Download references

Acknowledgments

A. Mobasheri wishes to acknowledge the generous financial support of the Wellcome Trust, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) (grant number: Mobasheri.A.28102007), the Biotechnology and Biological Sciences Research Council (BBSRC) (grants BBSRC/S/M/2006/13141 and BB/G018030/1), and the Engineering and Physical Sciences Research Council (EPSRC).

Conflict of Interest Statement

This chapter was written by the authors within the scope of their academic and research positions at their host institutions. None of the authors has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mobasheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mobasheri, A., Biesalski, H.K., Shakibaei, M., Henrotin, Y. (2014). Antioxidants and Osteoarthritis. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_130

Download citation

Publish with us

Policies and ethics