Skip to main content

Optical Resolution Materials

  • Reference work entry
  • First Online:
  • 143 Accesses

Synonyms

Chiral HPLC; Chiral recognition; Chiral separation; Enantiomer separation; Enantioseparation

Definition

If the mirror image of a compound is structurally different from each other just like our right and left hands, the compound is chiral and a pair of enantiomers (optical isomers) exists. The separation of enantiomers has been called “optical resolution” or just “resolution.” More recently, “enantioseparation” and “chiral separation” are also used in the same meaning. Most chemical and physical properties of enantiomers are identical, and therefore, their separation is not easy. To separate enantiomers, we usually have to receive the aid of chiral, optically active compounds or materials. In usual chromatographic resolutions by gas or liquid phase, the chiral materials have been called as the chiral stationary phases (CSPs).

Introduction

In 1848, Louis Pasteur succeeded in the first separation (resolution) of enantiomers by the direct crystallization of a racemic mixture...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gil-Av E, Feibush B, Charles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with optically active stationary phase. Tetrahedron Lett 7:1009–1015

    Google Scholar 

  2. Schurig V (1994) Enantiomer separation by gas chromatography on chiral stationary phases. J Chromatogr A 666:111–129

    CAS  Google Scholar 

  3. Busch KW, Busch MA (eds) (2006) Chiral analysis. Elsevier, Amsterdam

    Google Scholar 

  4. Subramanian G (ed) (2007) Chiral separation techniques, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  5. Rogozhin SV, Davankov VA (1971) Ligand chromatography on asymmetric complex-forming sorbents as a new method for resolution of racemates. J Chem Soc Chem Commun 1971:490–493

    Google Scholar 

  6. Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37:2593–2608

    CAS  Google Scholar 

  7. Yamamoto C, Okamoto Y (2004) Practical resolution of enantiomers by high-performance liquid chromatography. In: Toda F (ed) Enantiomer separation. Kluwer Academic, Dordrecht, pp 301–322

    Google Scholar 

  8. Ikai T, Okamoto Y (2010) Preparation and chiral recognition of polysaccharide-based selectors. In: Berthod A (ed) Chiral recognition in separation methods. Springer, Berlin, pp 33–52

    Google Scholar 

  9. Ikai T, Okamoto Y (2009) Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev 109:6077–6101

    CAS  Google Scholar 

  10. Yamamoto C, Okamoto Y (2004) Optically active polymers for chiral separation. Bull Chem Soc Jpn 77:227–257

    CAS  Google Scholar 

  11. Hesse G, Hagel R (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6:277–280

    CAS  Google Scholar 

  12. Okamoto Y, Yashima E (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed 37:1020–1043

    Google Scholar 

  13. Okamoto Y, Kawashima M, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel. J Am Chem Soc 106:5357–5359

    CAS  Google Scholar 

  14. Okamoto Y, Aburatani R, Fukumoto T, Hatada K (1987) Useful chiral stationary phases for HPLC amylose tris(3,5-dimethylphenylcarbamate) and tris(3,5- dichlorophenylcarbamate) supported on silica gel. Chem Lett 16:1857–1860

    Google Scholar 

  15. Yashima E, Okamoto Y (1995) Chiral Discrimination on polysaccharide derivatives. Bull Chem Soc Jpn 68:3289–3307

    CAS  Google Scholar 

  16. Kubota T, Yamamoto C, Okamoto Y (2000) Tris(cyclohexylcarbamate)s of cellulose and amylose as potential chiral stationary phases for high-performance liquid chromatography and thin-layer chromatography. J Am Chem Soc 122:4056–4059

    CAS  Google Scholar 

  17. Shen J, Ikai T, Okamoto Y (2010) Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups. J Chromatogr A 1217:1041–1047

    CAS  Google Scholar 

  18. Kaida Y, Okamoto Y (1993) Optical resolution by high-performance liquid chromatography on benzylcarbamates of cellulose and amylose. J Chromatogr 641:267–278

    CAS  Google Scholar 

  19. Okamoto Y, Noguchi J, Yashima E (1998) Enantioseparation on 3,5-dichloro- and 3,5-dimethylphenylcarbamates of polysaccharides as chiral stationary phases for high-performance liquid chromatography. React Funct Polym 37:183–188

    CAS  Google Scholar 

  20. Yamamoto C, Hayashi T, Okamoto Y (2003) High-performance liquid chromatographic enantioseparation using chitin carbamate derivatives as chiral stationary phases. J Chromatogr A 1021: 83–91

    CAS  Google Scholar 

  21. Higuchi A, Tamai M, Ko Y et al (2010) Polymeric membranes for chiral separation of pharmaceuticals and chemicals. Polym Rev 50:113–143

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Okamoto, Y., Shen, J. (2015). Optical Resolution Materials. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_135

Download citation

Publish with us

Policies and ethics