Encyclopedia of Color Science and Technology

Living Edition
| Editors: Ronnier Luo

Mach Bands

  • Sunčica Zdravković
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27851-8_348-1


In this brightness illusion the physical contrast on the edge between the adjacent shades of gray is exaggerated (Fig. 1). Austrian physicist and philosopher Ernst Mach (1838–1916) introduced this, now famous, optical illusion in 1865.


Spatial Frequency Lateral Inhibition Mach Band Illumination Edge Luminance Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Ratliff, F., Hartline, H.: The responses of Limulus optic nerve fibers to patterns of illumination on the receptor mosaic. J. Gen. Physiol. 42, 1241–1255 (1959)CrossRefGoogle Scholar
  2. 2.
    von Bekesy, G.: Mach- and Hering-type lateral inhibition in vision. Vision Res. 8, 1483–1499 (1968)CrossRefGoogle Scholar
  3. 3.
    Davidson, M.: A perturbation analysis of spatial brightness interaction in flashed visual fields. Ph.D. dissertation (unpublished). University of California, Berkeley (1966)Google Scholar
  4. 4.
    Fiorentini, A.: Foveal and extra foveal contrast threshold data point of a non uniform field. Atti delta Fondazione Giorgio Ronchi 12, 180–186 (1957)Google Scholar
  5. 5.
    Heinemann, E.: Simultaneous brightness induction. In: Jameson, D., Hurvich, L. (eds.) Handbook of Sensory Physiology, vol. VII-4, pp. 146–169. Springer, Berlin (1972)Google Scholar
  6. 6.
    Ratliff, F.: Why Mach bands are not seen at the edges of a step? Vision Res. 24, 163–165 (1984)CrossRefGoogle Scholar
  7. 7.
    Ross, J., Morrone, M., Burr, D.: The conditions under which Mach bands are visible. Vision Res. 29, 699–715 (1989)CrossRefGoogle Scholar
  8. 8.
    Morrone, M., Ross, J., Burr, D., Owens, R.: Mach bands depend on spatial phase. Nature 324, 250–253 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    Syrkin, G., Yinon, U., Gur, M.: Simple cells may be the physiological basis of the Mach band phenomenon: evidence from early monocularly deprived cats. Soc. Neurosci. Abstr. 20, 312 (1994)Google Scholar
  10. 10.
    Tolhurst, D.: On the possible existence of edge detector neurons in the human visual system. Vision Res. 12, 797–804 (1972)CrossRefGoogle Scholar
  11. 11.
    Morrone, M., Burr, D.: Feature detection in human vision: a phase-dependent energy model. Proc. R. Soc. Lond. B 235, 221–245 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Watt, R., Morgan, M.: A theory of the primitive spatial code in human vision. Vision Res. 25, 1661–1674 (1985)CrossRefGoogle Scholar
  13. 13.
    Fiorentini, A., Baumgartner, G., Magnussen, S., Schiller, P., Thomas, J.: The perception of brightness and darkness: relations to neuronal receptive fields. In: Spillmann, L., Werner, J. (eds.) Visual Perception: The Neurophysiological Foundations, pp. 129–161. Academic, San Diego (1990)CrossRefGoogle Scholar
  14. 14.
    du Buf, J.: Ramp edges, Mach bands, and the functional significance of the simple cell assembly. Biol. Cybern. 69, 449–461 (1994)CrossRefGoogle Scholar
  15. 15.
    Kingdom, F., Moulden, B.: A multi-channel approach to brightness coding. Vision Res. 32, 1565–1582 (1992)CrossRefGoogle Scholar
  16. 16.
    Pessoa, L.: Mach band attenuation by adjacent stimuli: experiment and filling-in simulations. Perception 25, 425–442 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Psychology, Faculty of PhilosophyUniversity of Novi SadNoviSadSerbia
  2. 2.Laboratory for Experimental PsychologyUniversity of BelgradeBelgradeSerbia