Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Alternate Parameterizations

  • Neeldhara  MisraEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_786-1

Years and Authors of Summarized Original Work

  • 2013; Fellows, Jansen, Rosamond

  • 2014; Lokshtanov, Narayanaswamy, Raman, Ramanujan, Saurabh

  • 2014; Marx, Pilipczuk

Problem Definition

A parameterized problem is a language \(L \subseteq \varSigma ^{{\ast}}\times \mathbb{N}\)

Keywords

Structural parameterization Above guarantee Dual parameters Complexity ecology of parameters 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chen J, Kanj IA, Jia W (2001) Vertex cover: further observations and further improvements. J Algorithms 41(2):280–301MathSciNetCrossRefGoogle Scholar
  2. 2.
    Courcelle B (1990) The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf Comput 85:12–75MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015) Parameterized algorithms. Springer, Cham. http://www.springer.com/us/book/9783319212746
  4. 4.
    Fellows MR, Lokshtanov D, Misra N, Rosamond FA, Saurabh S (2008) Graph layout problems parameterized by vertex cover. In: 19th international symposium on algorithms and computation (ISAAC). Lecture notes in computer science, vol 5369. Springer, Berlin, pp 294–305Google Scholar
  5. 5.
    Fellows M, Lokshtanov D, Misra N, Mnich M, Rosamond F, Saurabh S (2009) The complexity ecology of parameters: an illustration using bounded max leaf number. ACM Trans Comput Syst 45:822–848MathSciNetGoogle Scholar
  6. 6.
    Fellows MR, Jansen BMP, Rosamond FA (2013) Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur J Comb 34(3):541–566MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ganian R, Hlinený P, Kneis J, Meister D, Obdrzálek J, Rossmanith P, Sikdar S (2010) Are there any good digraph width measures? In: IPEC, vol 6478. Springer, Berlin, pp 135–146zbMATHGoogle Scholar
  8. 8.
    Ganian R, Slivovsky F, Szeider S (2013) Meta-kernelization with structural parameters. In: 38th international symposium on mathematical foundations of computer science, MFCS 2013. Lecture notes in computer science, vol 8087. Springer, Heidelberg, pp 457–468Google Scholar
  9. 9.
    Gaspers S, Szeider S (2012) Backdoors to satisfaction. In: Bodlaender HL, Downey R, Fomin FV, Marx D (eds) The multivariate algorithmic revolution and beyond. Lecture notes in computer science, vol 7370. Springer, Berlin/Heidelberg, pp 287–317CrossRefGoogle Scholar
  10. 10.
    Grohe M, Kreutzer S (2011) Methods for algorithmic meta theorems. In: Grohe M, Makowsky J (eds) Model theoretic methods in finite combinatorics. Contemporary mathematics, vol 558. American Mathematical Society, Providence, pp 181–206CrossRefGoogle Scholar
  11. 11.
    Henglein F, Mairson HG (1991) The complexity of type inference for higher-order typed lambda calculi. J Funct Program 4:119–130MathSciNetGoogle Scholar
  12. 12.
    Lokshtanov D, Narayanaswamy NS, Raman V, Ramanujan MS, Saurabh S (2014) Faster parameterized algorithms using linear programming. ACM Trans Algorithms 11(2):15:1–15:31Google Scholar
  13. 13.
    Mahajan M, Raman V (1999) Parameterizing above guaranteed values: maxsat and maxcut. J Algorithms 31(2):335–354MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Marx D, Pilipczuk M (2014) Everything you always wanted to know about the parameterized complexity of subgraph isomorphism (but were afraid to ask). In: 31st international symposium on theoretical aspects of computer science (STACS), Lyon, pp 542–553Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia