Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Algorithm DC-TREE for k-Servers on Trees

  • Marek ChrobakEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_7-2

Years and Authors of Summarized Original Work

1991; Chrobak, Larmore

Problem Definition

In the k-Server Problem, one wishes to schedule the movement of k-servers in a metric space \(\mathbb{M}\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bein W, Chrobak M, Larmore LL (2002) The 3-server problem in the plane. Theor Comput Sci 287:387–391CrossRefMathSciNetGoogle Scholar
  2. 2.
    Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. 3.
    Chrobak M, Larmore LL (1991) An optimal online algorithm for k servers on trees. SIAM J Comput 20:144–148CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chrobak M, Karloff H, Payne TH, Vishwanathan S (1991) New results on server problems. SIAM J Discret Math 4:172–181CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Koutsoupias E, Papadimitriou C (1994) On the k-server conjecture. In: Proceedings of the 26th symposium on theory of computing (STOC). ACM, Montreal, pp 507–511Google Scholar
  6. 6.
    Koutsoupias E, Papadimitriou C (1995) On the k-server conjecture. J ACM 42:971–983CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Manasse M, McGeoch LA, Sleator D (1988) Competitive algorithms for online problems. In: Proceedings of the 20th symposium on theory of computing (STOC). ACM, Chicago, pp 322–333Google Scholar
  8. 8.
    Manasse M, McGeoch LA, Sleator D (1990) Competitive algorithms for server problems. J Algorithms 11:208–230CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Computer ScienceUniversity of California, RiversideRiverside, CAUSA