Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Maximum Cardinality Stable Matchings

  • Eric McDermid
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27848-8_677-2

Years and Authors of Summarized Original Work

  • 2015; B. Dean, R. Jalasutram

  • 2007; M. Halld’orsson, K. Iwama, S. Miyazaki, H. Yanagisawa

  • 2003; M.M. Halld’orsson, K. Iwama, S. Miyazaki, H. Yanagisawa

  • 2004; M.M. Halld’orsson, K. Iwama, S. Miyazaki, H. Yanagisawa

  • 2014; C-C. Huang and T. Kavitha

  • 2008; R.W. Irving, D. Manlove

  • 2004; K. Iwama, S. Miyazaki, K. Okamoto

  • 2007; K. Iwama, S. Miyazaki, N. Yamauchi

  • 2008; K. Iwama, S. Miyazaki, N. Yamauchi

  • 2014; K. Iwama, S. Miyazaki, and H. Yanagisawa

  • 2011; Z. Kir’aly

  • 2013; Z. Kir’aly

  • 2002; D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, Y. Morita

  • 2009; E.J. McDermid

  • 2014; K.E. Paluch

  • 2014; A. Radnai

  • 2007; H. Yanagisawa

Problem Definition

The input to an instance of the classical stable marriage problem consists of a set of n men and n women. Additionally, each person provides a strictly ordered preference list of the opposite set. The goal is to find a complete matching of men to women that is also stable, i.e., a matching having the property that...

Keywords

Approximation algorithm Lower bounds Matching NP-hard Preferences Stability Ties UGC-hard Upper bounds 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Dean B, Jalasutram R (2015, to appear) Factor revealing LPs and stable matching with ties and incomplete lists. In: Proceedings of MATCH-UP 2015: the 3rd international workshop on matching under preferences, GlasgowGoogle Scholar
  2. 2.
    Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon 69:9–15zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Halldórsson MM, Iwama K, Miyazaki S, Yanagisawa H (2003) Improved approximation of the stable marriage problem. In: Proceedings of ESA 2003: the 11th annual European symposium on algorithms, Budapest. Lecture notes in computer science, vol 2832. Springer, pp 266–277Google Scholar
  4. 4.
    Halldórsson MM, Iwama K, Miyazaki S, Yanagisawa H (2004) Randomized approximation of the stable marriage problem. Theor Comput Sci 325(3):439–465zbMATHCrossRefGoogle Scholar
  5. 5.
    Halldórsson M, Iwama K, Miyazaki S, Yanagisawa H (2007) Improved approximation of the stable marriage problem. ACM Trans Algorithms 3(3):30-esGoogle Scholar
  6. 6.
    http://www.jrmp.jp (Japan Resident Matching Program website)
  7. 7.
    http://www.nrmp.org (National Resident Matching Program website)
  8. 8.
    http://www.carms.ca (Canadian Resident Matching Service website)
  9. 9.
    http://www.nes.scot.nhs.uk/sfas (Scottish Foundation Allocation Scheme website)
  10. 10.
    Huang C-C, Kavitha T (2014) An improved approximation algorithm for the stable marriage problem with one-sided ties. In: Proceedings of IPCO 2014, the 17th conference on integer programming and combinatorial optimization, Bonn. Lecture notes in computer science, vol 8494. Springer, pp 297–308Google Scholar
  11. 11.
    Irving RW, Manlove D (2008) Approximation algorithms for hard variants of the stable marriage and hospitals/residents problem. J Comb Optim 16(3):279–292zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Iwama K, Miyazaki S, Okamoto K (2004) A \(\left (2 - c\frac{\log n} {n}\right )\)-approximation algorithm for the stable marriage problem. In: Proceedings of SWAT 2004: the 9th Scandinavian workshop on algorithm theory, Humlebaek. Lecture notes in computer science, vol 3111. Springer, pp 349–361Google Scholar
  13. 13.
    Iwama K, Miyazaki S, Yamauchi N (2007) A 1.875-approximation algorithm for the stable marriage problem. In: Proceedings of SODA 2007: the eighteenth ACM/SIAM symposium on discrete algorithms, New Orleans, pp 288–297Google Scholar
  14. 14.
    Iwama K, Miyazaki S, Yamauchi N (2008) A \(\left (2 - c \frac{1} {\sqrt{n}}\right )\)-approximation algorithm for the stable marriage problem. Algorithmica 51(3):342–356zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Iwama K, Miyazaki S, Yanagisawa H (2014) A 25/17-approximation algorithm for the stable marriage problem with one-sided ties. Algorithmica 68:758–775MathSciNetCrossRefGoogle Scholar
  16. 16.
    Király Z (2011) Better and simpler approximation algorithms for the stable marriage problem. Algorithmica 60(1):3–20zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Király Z (2013) Linear time local approximation algorithm for maximum stable marriage. MDPI Algorithms 6(3):471–484CrossRefGoogle Scholar
  18. 18.
    Knuth DE (1976) Mariages stables. Les Presses de L’Université de Montréal, MontréalzbMATHGoogle Scholar
  19. 19.
    Manlove D (2013) Algorithmics of matching under preferences. World Scientific, HackensackzbMATHCrossRefGoogle Scholar
  20. 20.
    Manlove DF, Irving RW, Iwama K, Miyazaki S, Morita Y (2002) Hard variants of stable marriage. Theor Comput Sci 276(1–2):261–279zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    McDermid EJ (2009) A 3/2-approximation algorithm for general stable marriage. In: Proceedings of ICALP 2009: the 36th international colloquium on automata, languages and programming, Rhodes. Lecture notes in computer science, vol 5555. Springer, pp 689–700Google Scholar
  22. 22.
    Paluch KE (2014) Faster and simpler approximation of stable matchings. MDPI Algorithms 7(2):189–202MathSciNetCrossRefGoogle Scholar
  23. 23.
    Radnai A (2014) Approximation algorithms for the stable matching problem. Master’s thesis, Eötvös Loránd UniversityGoogle Scholar
  24. 24.
    Yanagisawa H (2007) Approximation algorithms for stable marriage problems. PhD thesis, School of Informatics, Kyoto UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Cedar ParkUSA