Skip to main content

Experimental Implementation of Tile Assembly

  • Living reference work entry
  • First Online:
  • 267 Accesses

Years and Authors of Summarized Original Work

2007; Schulman, Winfree

2008; Fujibayashi, Hariadi, Park, Winfree, Murata

2009; Barish, Schulman, Rothemund, Winfree

2012; Schulman, Yurke, Winfree

Problem Definition

From the earliest works on tile self-assembly, abstract theoretical models and experimental implementations have been linked. In 1998, in addition to developing the abstract and kinetic Tile Assembly Models (aTAM and kTAM) [14], Winfree et al. demonstrated the use of DNA tiles to construct a simple, periodic lattice [16]. Periodic lattices and “uniquely addressed” assemblies, where each tile type appears once in each assembly, have been widely studied, with systems employing up to a thousand unique tiles in three dimensions [8, 13]. While these systems provide insight into the behavior of DNA tile systems, algorithmic tile systems of more theoretical interest pose specific challenges for experimental implementation.

In the aTAM, abstract tiles attach individually to empty...

This is a preview of subscription content, log in via an institution.

Recommended Reading

  1. Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett 5(12):2586–2592. doi:10.1021/nl052038l

    Article  Google Scholar 

  2. Barish RD, Schulman R, Rothemund PWK, Winfree E (2009) An information-bearing seed for nucleating algorithmic self-assembly. PNAS 106:6054–6059. doi:10.1073/pnas.0808736106

    Article  Google Scholar 

  3. Chen HL, Goel A (2005) Error free self-assembly using error prone tiles. In: DNA 10, Milan. LNCS, vol 3384. Springer, pp 702–707

    Google Scholar 

  4. Doty D (2012) Theory of algorithmic self-assembly. Commun ACM 55(12):78–88. doi:10.1145/2380656.2380675

    Article  Google Scholar 

  5. Evans CG, Winfree E (2013) DNA sticky end design and assignment for robust algorithmic self-assembly. In: DNA 19, Tempe. LNCS, vol 8141. Springer, pp 61–75. doi:10.1007/978-3-319-01928-4_5

    Google Scholar 

  6. Evans CG, Hariadi RF, Winfree E (2012) Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level. J Am Chem Soc 134:10,485–10,492. doi:10.1021/ja301026z

    Article  Google Scholar 

  7. Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2008) Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett 8(7):1791–1797. doi:10.1021/nl0722830

    Article  Google Scholar 

  8. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183. doi:10.1126/science.1227268

    Article  Google Scholar 

  9. Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424. doi:10.1371/journal.pbio.0020424

    Article  Google Scholar 

  10. Schulman R, Winfree E (2007) Synthesis of crystals with a programmable kinetic barrier to nucleation. PNAS 104(39):15,236–15,241. doi:10.1073/pnas.0701467104

    Article  Google Scholar 

  11. Schulman R, Winfree E (2010) Programmable control of nucleation for algorithmic self-assembly. SIAM J Comput 39(4):1581–1616. doi:10.1137/070680266

    Article  MathSciNet  Google Scholar 

  12. Schulman R, Yurke B, Winfree E (2012) Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109(17):6405–6410. doi:10.1073/pnas.1117813109

    Article  Google Scholar 

  13. Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400):623–626

    Article  Google Scholar 

  14. Winfree E (1998) Simulations of computing by self-assembly. Technical report CaltechCSTR:1998.22, Pasadena

    Google Scholar 

  15. Winfree E, Bekbolatov R (2004) Proofreading tile sets: error correction for algorithmic self-assembly. In: DNA 9, Madison. Wisconson, LNCS, vol 2943. Springer, pp 126–144

    Google Scholar 

  16. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544

    Article  Google Scholar 

  17. Yin P, Hariadi RF, Sahu S, Choi HMT, Park SH, LaBean TH, Reif JH (2008) Programming DNA tube circumferences. Science 321(5890):824–826. doi:10.1126/science.1157312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine G. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Evans, C.G. (2015). Experimental Implementation of Tile Assembly. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27848-8_674-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27848-8_674-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27848-8

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics