Skip to main content

Patterned Self-Assembly Tile Set Synthesis

  • Living reference work entry
  • First Online:
  • 554 Accesses

Years and Authors of Summarized Original Work

2008; Ma, Lombardi

2013; Seki

2014; Göös, Lampiäinen, Czeizler, Orponen

2014; Kari, Kopecki, Meunier, Patitz, Seki

Problem Definition

A tile type is a colored unit square each of whose four sides is provided with a glue. An assembly is a partial function from \(\mathbb{Z}^{2}\) (2D-grid) to a tile type set T. A (rectangular) pattern P (of width w and height h) is a function from the rectangular domain [w] × [h] to a set of colors, where [m] = { 1, , m} for \(m \in \mathbb{N}\). If at most k colors appear on P, we say P is k-colored. Tiles being colored, an assembly of domain [w] × [h] induces a unique pattern of width w and height h.

Fig. 1
figure 1

(Left) Four tile types implement together the half-adder with two inputs A, B from the west and south, the output S to the north, and the carryout C to the east (Right) Copies of the “half-adder” tile types turn the L-shape seed into the binary counter pattern

This is a preview of subscription content, log in via an institution.

Recommended Reading

  1. Czeizler E, Popa A (2012) Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. In: Proceedings of the DNA 18, Aarhus. LNCS, vol 7433. Springer, pp 58–72

    Google Scholar 

  2. Göös M, Lampiäinen T, Czeizler E, Orponen P (2014) Search methods for tile sets in patterned DNA self-assembly. J Comput Syst Sci 80:297–319

    Article  MATH  Google Scholar 

  3. Johnsen A, Kao MY, Seki S (2013) Computing minimum tile sets to self-assemble color patterns. In: Proceedings of the ISAAC 2013, Hong Kong. LNCS, vol 8283. Springer, pp 699–710

    Google Scholar 

  4. Johnsen A, Kao MY, Seki S (2014, Submitted) A manually-checkable proof for the NP-hardness of 11-color pattern self-assembly tile set synthesis

    Google Scholar 

  5. Kari L, Kopecki S, Seki S (2013) 3-color bounded patterned self-assembly. In: Proceedings of the DNA 19, Tempe. LNCS, vol 8141. Springer, pp 105–117

    Google Scholar 

  6. Kari L, Kopecki S, Étienne Meunier P, Patitz MJ, Seki S (2014) Binary pattern tile set synthesis is NP-hard. arXiv: 1404.0967

    Google Scholar 

  7. Ma X, Lombardi F (2008) Synthesis of tile sets for DNA self-assembly. IEEE Trans Comput-Aided Des Integr Circuits Syst 27(5):963–967

    Article  Google Scholar 

  8. Ma X, Lombardi F (2009) On the computational complexity of tile set synthesis for DNA self-assembly. IEEE Trans Circuits Syst II 56(1):31–35

    Article  Google Scholar 

  9. Seki S (2013) Combinatorial optimization in pattern assembly (extended abstract). In: Proceedings of the UCNC 2013, Milan. LNCS, vol 7956. Springer, pp 220–231

    Google Scholar 

  10. Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinnosuke Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Seki, S. (2015). Patterned Self-Assembly Tile Set Synthesis. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27848-8_666-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27848-8_666-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27848-8

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics