Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Max-Min Allocation

  • Deeparnab  ChakrabartyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_539-1

Years and Authors of Summarized Original Work

2006; Bansal, Sviridenko

2007; Asadpour, Saberi

2008; Feige

2009; Chakrabarty, Chuzhoy, Khanna

Problem Definition

The max-min allocation problem has the following setting. There is a set A of m agents and a set I of n items. Each agent i ∈ A has utility \(u_{\mathit{ij}} \in \mathbb{R}_{\geq 0}\)


Approximation algorithms Linear programs Scheduling and resource allocation 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Asadpour A, Saberi A (2010) An approximation algorithm for max-min fair allocation of indivisible goods. SIAM J Comput 39(7):2970–2989CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Asaspour A, Feige U, Saberi A (2012) Santa Claus meets hypergraph matching. ACM Trans Algorithms 8(3):24MathSciNetGoogle Scholar
  3. 3.
    Bansal N, Sviridenko M (2006) The Santa Claus problem. In: ACM symposium on theory of computing (STOC), SeattleGoogle Scholar
  4. 4.
    Bateni M, Charikar M, Guruswami V (2009) Maxmin allocation via degree lower-bounded arborescences. In: ACM symposium on theory of computing (STOC), BethesdaGoogle Scholar
  5. 5.
    Bezakova I, Dani V (2005) Allocating indivisible goods. SIGecom Exch 5(3):11–18CrossRefGoogle Scholar
  6. 6.
    Brams S, Taylor A (1996) Fair division: from cake-cutting to dispute resolution. Cambridge University Press, Cambridge/New YorkCrossRefzbMATHGoogle Scholar
  7. 7.
    Chakrabarty D, Chuzhoy J, Khanna S (2009) On allocations that maximize fairness. In: Proceedings, IEEE symposium on foundations of computer science (FOCS), AtlantaGoogle Scholar
  8. 8.
    Feige U (2008) On allocations that maximize fairness. In: Proceedings, ACM-SIAM symposium on discrete algorithms (SODA), San FranciscoGoogle Scholar
  9. 9.
    Haeupler B, Saha B, Srinivasan A (2011) New constructive aspects of the lovász local lemma. J ACM 58(6)Google Scholar
  10. 10.
    Moser R, Tardos G (2010) A constructive proof of the general lovász local lemma. J ACM 57(2)Google Scholar
  11. 11.
    Woeginger G (1997) A polynomial-time approximation scheme for maximizing the minimum machine completion time. Oper Res Lett 20(4):149–154CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Microsoft ResearchBangaloreIndia