Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Convex Hulls

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_508-1

Years and Authors of Summarized Original Work

  • 1972; Graham

  • 1973; Jarvis

  • 1977; Preparata, Hong

  • 1996; Chan

Problem Definition

The convex hull of a set P of n points in \(\mathbb{R}^{d}\)


Computational geometry Point sets 
This is a preview of subscription content, log in to check access

Recommended Reading

  1. 1.
    CGAL (2014) Computational geometry algorithms library. http://www.cgal.org
  2. 2.
    Chan T (1996) Optimal output-sensitive convex hull algorithms in two and three dimensions. Discret Comput Geom 16(4):361–368. DOI10.1007/BF02712873Google Scholar
  3. 3.
    Devadoss SL, O’Rourke J (2011) Discrete and computational geometry. Princeton University Press, PrincetonGoogle Scholar
  4. 4.
    Graham RL (1972) An efficient algorithm for determining the convex hull of a finite planar set. Inf Process Lett 1(4):132–133CrossRefMATHGoogle Scholar
  5. 5.
    Jarvis R (1973) On the identification of the convex hull of a finite set of points in the plane. Information Process Lett 2(1):18–21. DOI10.1016/0020-0190(73)90020-3Google Scholar
  6. 6.
    Kettner L, Mehlhorn K, Pion S, Schirra S, Yap CK (2004) Classroom examples of robustness problems in geometric computations. In: Proceedings of the 12th annual European symposium on algorithms, vol 3221, pp 702–713Google Scholar
  7. 7.
    O’Rourke J (1998) Computational geometry in C, 2nd edn. Cambridge University Press, New YorkCrossRefMATHGoogle Scholar
  8. 8.
    Preparata FP, Hong SJ (1977) Convex hulls of finite sets of points in two and three dimensions. Commun ACM 20(2):87–93MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sack JR, Urrutia J (eds) (2000) Handbook of computational geometry. North-Holland, AmsterdamMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTU BraunschweigBraunschweigGermany
  2. 2.The Selim and Rachel Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael