Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Maximum Matching

  • Marcin MuchaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_225-2

Years and Authors of Summarized Original Work

2004; Mucha, Sankowski

Problem Definition

Let G = (V, E) be an undirected graph, and let \(n =\vert V \vert\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bunch J, Hopcroft J (1974) Triangular factorization and inversion by fast matrix multiplication. Math Comput 125:231–236CrossRefMathSciNetGoogle Scholar
  2. 2.
    Coppersmith D, Winograd S (1987) Matrix multiplication via arithmetic progressions. In: Proceedings of the 19th annual ACM conference on theory of computing (STOC), New York, pp 1–6Google Scholar
  3. 3.
    Edmonds J (1965) Paths, trees, and flowers. Can J Math 17:449–467CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gabow HN, Tarjan RE (1991) Faster scaling algorithms for general graph matching problems. J ACM 38(4):815–853CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Harvey N (2006) Algebraic structures and algorithms for matching and matroid problems. In: Proceedings of the 47th annual IEEE symposium on foundations of computer science (FOCS), BerkeleyGoogle Scholar
  6. 6.
    Harvey JAN (2009) Algebraic algorithms for matching and matroid problems. SIAM J Comput 39(2):679–702CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hopcroft JE, Karp RM (1973) An O(n 5∕2) Algorithm for maximum matchings in bipartite graphs. SIAM J Comput 2:225–231CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Karloff H (1986) A Las Vegas RNC algorithm for maximum matching. Combinatorica 6:387–391CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Karp R, Upfal E, Widgerson A (1986) Constructing a perfect matching is in random NC. Combinatorica 6:35–48CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lovász L (1979) On determinants, matchings and random algorithms. In: Budach L (ed) Fundamentals of computation theory (FCT’79), Wendisch-Rietz, pp 565–574. Akademie-Verlag, BerlinGoogle Scholar
  11. 11.
    Lovász L, Plummer MD (1986) Matching theory. Akadémiai Kiadó – North Holland, BudapestzbMATHGoogle Scholar
  12. 12.
    Micali S, Vazirani VV (1980) An \(O(\sqrt{V E})\) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st annual IEEE symposium on foundations of computer science (FOCS), Syracuse, pp 17–27Google Scholar
  13. 13.
    Mucha M, Sankowski P (2004) Maximum matchings via Gaussian elimination. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science (FOCS), Rome, pp 248–255Google Scholar
  14. 14.
    Mucha M, Sankowski P (2006) Maximum matchings in planar graphs via Gaussian elimination. Algorithmica 45:3–20CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mulmuley K, Vazirani UV, Vazirani VV (1987) Matching is as easy as matrix inversion. In: Proceedings of the 19th annual ACM conference on theory of computing, New York, pp 345–354. ACMGoogle Scholar
  16. 16.
    Rabin MO, Vazirani VV (1989) Maximum matchings in general graphs through randomization. J Algorithms 10:557–567CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Sankowski P (2005) Processor efficient parallel matching. In: Proceeding of the 17th ACM symposium on parallelism in algorithms and architectures (SPAA), Las Vegas, pp 165–170Google Scholar
  18. 18.
    Sankowski P (2006) Weighted bipartite matching in matrix multiplication time. In: Proceedings of the 33rd international colloquium on automata, languages and programming, Venice, pp 274–285Google Scholar
  19. 19.
    Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin/HeidelbergGoogle Scholar
  20. 20.
    Vassilevska Williams V (2012) Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th symposium on theory of computing conference (STOC), New York, pp 887–898Google Scholar
  21. 21.
    Vazirani VV (1994) A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{V E})\) maximum matching algorithm. Combinatorica 14(1):71–109CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Yuster R, Zwick U (2007) Maximum matching in graphs with an excluded minor. In: Proceedings of the ACM-SIAM symposium on discrete algorithms (SODA), New OrleansGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics, Informatics and MechanicsInstitute of InformaticsWarsawPoland