Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Max Cut

  • Alantha NewmanEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_219-2

Synonyms

Year and Authors of Summarized Original Work

  • 1994; 1995; Goemans, Williamson

Problem Definition

Given an undirected edge-weighted graph, G = (V, E), the maximum cut problem (MAX CUT) is to find a bipartition of the vertices that maximizes the weight of the edges crossing the partition. If the edge weights are non-negative, then this problem is equivalent to finding a maximum weight subset of the edges that forms a bipartite subgraph, i.e., the maximum bipartite subgraph problem. All results discussed in this article assume non-negative edge weights. MAX CUT is one of Karp’s original NP-complete problems [20]. In fact, it is NP-hard to approximate to within a factor better than \(\frac{16} {17}\)

Keywords

Graph partitioning Approximation algorithms 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Andersson G, Engebretsen L, Håstad J (2001) A new way to use semidefinite programming with applications to linear equations mod p. J Algorithms 39:162–204zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Arora S, Rao S, Vazirani U (2004) Expander flows, geometric embeddings and graph partitioning. In: Proceedings of the 36th annual symposium on the theory of computing (STOC), Chicago, pp 222–231Google Scholar
  3. 3.
    Barahona F (1993) On cuts and matchings in planar graphs. Math Program 60:53–68zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Blum A, Konjevod G, Ravi R, Vempala S (2000) Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. Theor Comput Sci 235:25–42zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Charikar M, Guruswami V, Wirth A (2003) Clustering with qualitative information. In: Proceedings of the 44th annual IEEE symposium on foundations of computer science (FOCS), Boston, pp 524–533Google Scholar
  6. 6.
    Chor B, Sudan M (1998) A geometric approach to betweeness. SIAM J Discret Math 11:511–523zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    de Klerk E, Pasechnik DV, Warners JP (2004) On approximate graph colouring and MAX-k-CUT algorithms based on the \(\theta\) function. J Comb Optim 8(3):267–294zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Delorme C, Poljak S (1993) Laplacian eigenvalues and the maximum cut problem. Math Program 62:557–574zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Delorme C, Poljak S (1993) The performance of an eigenvalue bound in some classes of graphs. Discret Math 111:145–156. Also appeared in Proceedings of the conference on combinatorics, Marseille, 1990Google Scholar
  10. 10.
    Feige U, Schechtman G (2002) On the optimality of the random hyperplane rounding technique for MAX-CUT. Random Struct Algorithms 20(3):403–440zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Frieze A, Jerrum MR (1997) Improved approximation algorithms for MAX-k-CUT and MAX BISECTION. Algorithmica 18:61–77MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J ACM 42:1115–1145zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Goemans MX, Williamson DP (2004) Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. STOC 2001 Spec Issue J Comput Syst Sci 68:442–470Google Scholar
  14. 14.
    Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1:169–197zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  16. 16.
    Halperin E, Zwick U (2002) A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Struct Algorithms 20(3):382–402zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Håstad J (2001) Some optimal inapproximability results. J ACM 48:798–869zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Karger DR, Motwani R, Sudan M (1998) Improved graph coloring via semidefinite programming. J ACM 45(2):246–265zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Karloff HJ (1999) How good is the Goemans-Williamson MAX CUT algorithm? SIAM J Comput 29(1):336–350zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations. Plenum, New York, pp 85–104Google Scholar
  21. 21.
    Khot S (2002) On the power of unique 2-prover 1-round games. In: Proceedings of the 34th annual symposium on the theory of computing (STOC), Montreal, pp 767–775Google Scholar
  22. 22.
    Khot S, Kindler G, Mossel E, O’Donnell R (2004) Optimal inapproximability results for MAX CUT and other 2-variable CSPs? In: Proceedings of the 45th annual IEEE symposium on foundations of computer science (FOCS), Rome, pp 146–154Google Scholar
  23. 23.
    Mahajan R, Hariharan R (1995) Derandomizing semidefinite programming based approximation algorithms. In: Proceedings of the 36th annual IEEE symposium on foundations of computer science (FOCS), Milwaukee, pp 162–169Google Scholar
  24. 24.
    Mohar B, Poljak S (1990) Eigenvalues and the max-cut problem. Czech Math J 40(115):343–352MathSciNetGoogle Scholar
  25. 25.
    Newman A (2004) A note on polyhedral relaxations for the maximum cut problem. Unpublished manuscriptGoogle Scholar
  26. 26.
    Poljak S (1992) Polyhedral and eigenvalue approximations of the max-cut problem. Sets Graphs Numbers Colloqiua Mathematica Societatis Janos Bolyai 60:569–581MathSciNetGoogle Scholar
  27. 27.
    Poljak S, Rendl F (1994) Node and edge relaxations of the max-cut problem. Computing 52:123–137zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Poljak S, Rendl F (1995) Nonpolyhedral relaxations of graph-bisection problems. SIAM J Optim 5:467–487zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Poljak S, Rendl F (1995) Solving the max-cut using eigenvalues. Discret Appl Math 62(1–3):249–278zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Poljak S, Tuza Z (1995) Maximum cuts and large bipartite subgraphs. DIMACS Ser Discret Math Theor Comput Sci 20:181–244MathSciNetGoogle Scholar
  31. 31.
    Sahni S, Gonzalez T (1976) P-complete approximation problems. J ACM 23(3):555–565zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Soto JA (2015) Improved analysis of a max-cut algorithm based on spectral partitioning. SIAM J Discret Math 29(1):259–268MathSciNetCrossRefGoogle Scholar
  33. 33.
    Swamy C (2004) Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of 15th annual ACM-SIAM symposium on discrete algorithms (SODA), New Orleans, pp 526–527Google Scholar
  34. 34.
    Trevisan L (2012) Max cut and the smallest eigenvalue. SIAM J Comput 41(6):1769–1786zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Trevisan L, Sorkin GB, Sudan M, Williamson DP (2000) Gadgets, approximation, and linear programming. SIAM J Comput 29(6):2074–2097zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.CNRS-Université Grenoble Alpes and G-SCOPGrenobleFrance