Skip to main content

Linearity and Group Homomorphism Testing/Testing Hadamard Codes

  • Living reference work entry
  • First Online:
Encyclopedia of Algorithms

Years and Authors of Summarized Original Work

1993; Blum, Luby, Rubinfeld

Problem Definition

In this article, we discuss the problem of testing linearity of functions and, more generally, testing whether a given function is a group homomorphism. An algorithm for this problem, given by [9], is one of the most celebrated property testing algorithms. It is part of or is a special case of many important property testers for algebraic properties. Originally designed for program checkers and self-correctors, it has found uses in probabilistically checkable proofs (PCPs), which are an essential tool in proving hardness of approximation.

We start by formulating an important special case of the problem, testing the linearity of Boolean functions. A function f : { 0, 1}n → { 0, 1} is linear if for some a 1, a 2, , a n  ∈ { 0, 1},

$$\displaystyle{f(x_{1},x_{2},\ldots ,x_{n}) = a_{1}x_{1} + a_{2}x_{2} + \cdots a_{n}x_{n}.}$$

The operations in this definition are over \(\mathbb{F}_{2}\). That is,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alon N, Kaufman T, Krivilevich M, Litsyn S, Ron D (2003) Testing low-degree polynomials over GF(2). In: Proceedings of RANDOM’03, Princeton, pp 188–199

    Google Scholar 

  2. Ar S, Blum M, Codenotti B, Gemmell P (1993) Checking approximate computations over the reals. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, San Diego, pp 786–795

    Google Scholar 

  3. Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and the hardness of approximation problems. J ACM 45(3):501–555

    Article  MathSciNet  MATH  Google Scholar 

  4. Aumann Y, Håstad J, Rabin MO, Sudan M (2001) Linear-consistency testing. J Comput Syst Sci 62(4):589–607

    Article  MATH  Google Scholar 

  5. Bellare M, Coppersmith D, Håstad J, Kiwi M, Sudan M (1996) Linearity testing over characteristic two. IEEE Trans Inf Theory 42(6):1781–1795

    Article  MATH  Google Scholar 

  6. Bellare M, Goldreich O, Sudan M (1998) Free bits, PCPs, and nonapproximability—towards tight results. SIAM J Comput 27(3):804–915

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Or M, Coppersmith D, Luby M, Rubinfeld R (2008) Non-Abelian homomorphism testing, and distributions close to their self-convolutions. Random Struct Algorithms 32(1):49–70

    Article  MATH  Google Scholar 

  8. Ben-Sasson E, Sudan M, Vadhan S, Wigderson A (2003) Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Computing, San Diego, pp 612–621

    Google Scholar 

  9. Blum M, Luby M, Rubinfeld R (1993) Self-testing/correcting with applications to numerical problems. JCSS 47:549–595

    MathSciNet  MATH  Google Scholar 

  10. Ergun F, Kumar R, Rubinfeld R (2001) Checking approximate computations of polynomials and functional equations. SIAM J Comput 31(2):550–576

    Article  MathSciNet  Google Scholar 

  11. Gemmell P, Lipton R, Rubinfeld R, Sudan M, Wigderson A (1991) Self-testing/correcting for polynomials and for approximate functions. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, New Orleans, pp 32–42

    Google Scholar 

  12. Goldreich O, Goldwasser S, Ron D (1998) Property testing and its connection to learning and approximation. J ACM 45(4):653–750

    Article  MathSciNet  MATH  Google Scholar 

  13. Håstad J (2001) Some optimal in approximability results. J ACM 48(4):798–859

    Article  MathSciNet  MATH  Google Scholar 

  14. Hastad J, Wigderson A (2003) Simple analysis of graph tests for linearity and PCP. Random Struct Algorithms 22(2):139–160

    Article  MathSciNet  MATH  Google Scholar 

  15. Jutla CS, Patthak AC, Rudra A, Zuckerman D (2009) Testing low-degree polynomials over prime fields. Random Struct Algorithms 35(2):163–193

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaufman T, Ron D (2006) Testing polynomials over general fields. SIAM J Comput 36(3):779–802

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaufman T, Litsyn S, Xie N (2010) Breaking the epsilon-soundness bound of the linearity test over GF(2). SIAM J Comput 39(5):1988–2003

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiwi M, Magniez F, Santha M (2001) Exact and approximate testing/correcting of algebraic functions: a survey. Electron. Colloq. Comput. Complex. 8(14). http://dblp.uni-trier.de/db/journals/eccc/eccc8.html#ECCC-TR01-014

  19. Kiwi M, Magniez F, Santha M (2003) Approximate testing with error relative to input size. JCSS 66(2):371–392

    MathSciNet  MATH  Google Scholar 

  20. Magniez F (2005) Multi-linearity self-testing with relative error. Theory Comput Syst 38(5):573–591

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Donnell R (2014) Analysis of Boolean Functions. Cambridge University Press, New York

    MATH  Google Scholar 

  22. Parnas M, Ron D, Samorodnitsky A (2002) Testing basic Boolean formulae. SIAM J Discret Math 16(1):20–46

    Article  MathSciNet  MATH  Google Scholar 

  23. Rubinfeld R, Sudan M (1996) Robust characterizations of polynomials with applications to program testing. SIAM J Comput 25(2):252–271

    Article  MathSciNet  MATH  Google Scholar 

  24. Samorodnitsky A, Trevisan L (2000) A PCP characterization of NP with optimal amortized query complexity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, pp 191–199

    Google Scholar 

  25. Shpilka A, Wigderson A (2006) Derandomizing homomorphism testing in general groups. SIAM J Comput 36(4):1215–1230

    Article  MathSciNet  MATH  Google Scholar 

  26. Trevisan L (1998) Recycling queries in PCPs and in linearity tests. In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, pp 299–308

    Google Scholar 

Download references

Acknowledgements

The first author was supported in part by NSF award CCF-1422975 and by NSF CAREER award CCF-0845701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofya Raskhodnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Raskhodnikova, S., Rubinfeld, R. (2015). Linearity and Group Homomorphism Testing/Testing Hadamard Codes. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27848-8_202-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27848-8_202-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27848-8

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics