Encyclopedia of Algorithms

Living Edition
| Editors: Ming-Yang Kao

Linearity and Group Homomorphism Testing/Testing Hadamard Codes

  • Sofya RaskhodnikovaEmail author
  • Ronitt Rubinfeld
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27848-8_202-2

Years and Authors of Summarized Original Work

1993; Blum, Luby, Rubinfeld

Problem Definition

In this article, we discuss the problem of testing linearity of functions and, more generally, testing whether a given function is a group homomorphism. An algorithm for this problem, given by [9], is one of the most celebrated property testing algorithms. It is part of or is a special case of many important property testers for algebraic properties. Originally designed for program checkers and self-correctors, it has found uses in probabilistically checkable proofs (PCPs), which are an essential tool in proving hardness of approximation.

We start by formulating an important special case of the problem, testing the linearity of Boolean functions. A function f : { 0, 1} n → { 0, 1} is linear if for some a 1,  a 2,  ,  a n ∈ { 0, 1},
$$\displaystyle{f(x_{1},x_{2},\ldots ,x_{n}) = a_{1}x_{1} + a_{2}x_{2} + \cdots a_{n}x_{n}.}$$


Property testing Sublinear-time algorithms Linearity of functions Group homomorphism Error-correcting codes 
This is a preview of subscription content, log in to check access.



The first author was supported in part by NSF award CCF-1422975 and by NSF CAREER award CCF-0845701.


  1. 1.
    Alon N, Kaufman T, Krivilevich M, Litsyn S, Ron D (2003) Testing low-degree polynomials over GF(2). In: Proceedings of RANDOM’03, Princeton, pp 188–199Google Scholar
  2. 2.
    Ar S, Blum M, Codenotti B, Gemmell P (1993) Checking approximate computations over the reals. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, San Diego, pp 786–795Google Scholar
  3. 3.
    Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and the hardness of approximation problems. J ACM 45(3):501–555MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aumann Y, Håstad J, Rabin MO, Sudan M (2001) Linear-consistency testing. J Comput Syst Sci 62(4):589–607CrossRefzbMATHGoogle Scholar
  5. 5.
    Bellare M, Coppersmith D, Håstad J, Kiwi M, Sudan M (1996) Linearity testing over characteristic two. IEEE Trans Inf Theory 42(6):1781–1795CrossRefzbMATHGoogle Scholar
  6. 6.
    Bellare M, Goldreich O, Sudan M (1998) Free bits, PCPs, and nonapproximability—towards tight results. SIAM J Comput 27(3):804–915MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Or M, Coppersmith D, Luby M, Rubinfeld R (2008) Non-Abelian homomorphism testing, and distributions close to their self-convolutions. Random Struct Algorithms 32(1):49–70CrossRefzbMATHGoogle Scholar
  8. 8.
    Ben-Sasson E, Sudan M, Vadhan S, Wigderson A (2003) Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Computing, San Diego, pp 612–621Google Scholar
  9. 9.
    Blum M, Luby M, Rubinfeld R (1993) Self-testing/correcting with applications to numerical problems. JCSS 47:549–595MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ergun F, Kumar R, Rubinfeld R (2001) Checking approximate computations of polynomials and functional equations. SIAM J Comput 31(2):550–576MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gemmell P, Lipton R, Rubinfeld R, Sudan M, Wigderson A (1991) Self-testing/correcting for polynomials and for approximate functions. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, New Orleans, pp 32–42Google Scholar
  12. 12.
    Goldreich O, Goldwasser S, Ron D (1998) Property testing and its connection to learning and approximation. J ACM 45(4):653–750MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Håstad J (2001) Some optimal in approximability results. J ACM 48(4):798–859MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hastad J, Wigderson A (2003) Simple analysis of graph tests for linearity and PCP. Random Struct Algorithms 22(2):139–160MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jutla CS, Patthak AC, Rudra A, Zuckerman D (2009) Testing low-degree polynomials over prime fields. Random Struct Algorithms 35(2):163–193MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaufman T, Ron D (2006) Testing polynomials over general fields. SIAM J Comput 36(3):779–802MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kaufman T, Litsyn S, Xie N (2010) Breaking the epsilon-soundness bound of the linearity test over GF(2). SIAM J Comput 39(5):1988–2003MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kiwi M, Magniez F, Santha M (2001) Exact and approximate testing/correcting of algebraic functions: a survey. Electron. Colloq. Comput. Complex. 8(14). http://dblp.uni-trier.de/db/journals/eccc/eccc8.html#ECCC-TR01-014
  19. 19.
    Kiwi M, Magniez F, Santha M (2003) Approximate testing with error relative to input size. JCSS 66(2):371–392MathSciNetzbMATHGoogle Scholar
  20. 20.
    Magniez F (2005) Multi-linearity self-testing with relative error. Theory Comput Syst 38(5):573–591MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    O’Donnell R (2014) Analysis of Boolean Functions. Cambridge University Press, New YorkzbMATHGoogle Scholar
  22. 22.
    Parnas M, Ron D, Samorodnitsky A (2002) Testing basic Boolean formulae. SIAM J Discret Math 16(1):20–46MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rubinfeld R, Sudan M (1996) Robust characterizations of polynomials with applications to program testing. SIAM J Comput 25(2):252–271MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Samorodnitsky A, Trevisan L (2000) A PCP characterization of NP with optimal amortized query complexity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, pp 191–199Google Scholar
  25. 25.
    Shpilka A, Wigderson A (2006) Derandomizing homomorphism testing in general groups. SIAM J Comput 36(4):1215–1230MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Trevisan L (1998) Recycling queries in PCPs and in linearity tests. In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, pp 299–308Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentPennsylvania State UniversityUniversity Park, State College, PAUSA