Pediatric Renal Tumors

  • Elizabeth Mullen
  • Jordan Kreidberg
  • Christopher B. Weldon
Living reference work entry

Abstract

Renal cancers in pediatric patients are relatively common, with an incidence of almost 8 per 1,000,000 representing approximately 7 % of all childhood cancers [1]. The vast majority (>90 %) of these are Wilms’ tumors (WTs), but several other histological types of renal tumors also occur in children (Table 1). The incidence of each type of renal tumor is tightly correlated to the age of the patient. WT, most common in children under age 5, is very rarely seen in adolescents and young adults. An adolescent over 15 years of age with a renal tumor is more likely to have renal cell carcinoma. Rhabdoid tumor of the kidney (RTK) and congenital mesoblastic nephroma (CMN) are seen almost exclusively in infants less than a year, and clear cell sarcoma almost always occurs in children less than 4 years old. With current multimodality therapy, curative therapy can be provided for the majority of children with a diagnosis of favorable-histology Wilms’ tumor; however, the cure rates for children with relapsed or anaplastic WT and RTK remain unacceptably low.

Keywords

Renal Tumor Partial Nephrectomy Gonadal Dysgenesis Clear Cell Sarcoma Metanephric Mesenchyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Dr. Valerie Schumacher for reviewing the chapter. We would also like to thank Drs. Stephan Voss and Kyle Korek for their assistance in compiling the radiology and pathology figures, respectively.

References

  1. 1.
    Bernstein L. Renal tumors. In: Ries LAG, Smith M, Gurney JG, editors. Cancer incidence and survival among children and adolexcents: United States SEER Program 1975–1995. Bethesda: National Cancer Institute, SEER Program; 1999. p. 79–90Google Scholar
  2. 2.
    Wilms M. Die Mischgeschwilste. A Georgi Leipzig; 1899. p. 1–90.Google Scholar
  3. 3.
    Raffensperger J. Max Wilms and his tumor. J Pediatr Surg. 2015;50(2):356–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Rivera MN, Haber DA. Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer. 2005;5(9):699–712.PubMedCrossRefGoogle Scholar
  5. 5.
    Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am J Med Genet. 1998;79(4):268–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Gadd S, Huff V, Huang CC, Ruteshouser EC, Dome JS, Grundy PE, et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children’s Oncology Group Study. Neoplasia. 2012;14(8):742–56.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Breslow NE, Beckwith JB. Epidemiological features of Wilms’ tumor: results of the National Wilms’ Tumor Study. J Natl Cancer Inst. 1982;68(3):429–36.PubMedGoogle Scholar
  8. 8.
    Bond JV. Bilateral Wilms’ tumour. Age at diagnosis, associated congenital anormalies, and possible pattern of inheritance. Lancet. 1975;2(7933):482–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Knudson Jr AG, Strong LC. Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst. 1972;48(2):313–24.PubMedGoogle Scholar
  11. 11.
    Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 1990;343(6260):774–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell. 1990;60(3):509–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat. 1997;9(3):209–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Gessler M, Konig A, Arden K, Grundy P, Orkin S, Sallan S, et al. Infrequent mutation of the WT1 gene in 77 Wilms’ Tumors. Hum Mutat. 1994;3(3):212–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheng WW, Soukup S, Bove K, Gotwals B, Lampkin B. Chromosome analysis of 31 Wilms’ tumors. Cancer Res. 1990;50(9):2786–93.PubMedGoogle Scholar
  16. 16.
    Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316(5827):1043–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315(5812):642–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Scott RH, Douglas J, Baskcomb L, Huxter N, Barker K, Hanks S, et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet. 2008;40(11):1329–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Reeve AE, Sih SA, Raizis AM, Feinberg AP. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol Cell Biol. 1989;9(4):1799–803.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet. 1989;44(5):711–9.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Riccardi VM, Sujansky E, Smith AC, Francke U. Chromosomal imbalance in the Aniridia-Wilms’ tumor association: 11p interstitial deletion. Pediatrics. 1978;61(4):604–10.PubMedGoogle Scholar
  22. 22.
    Guertl B, Ratschek M, Harms D, Jaenig U, Leuschner I, Poremba C, et al. Clonality and loss of heterozygosity of WT genes are early events in the pathogenesis of nephroblastomas. Hum Pathol. 2003;34(3):278–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Lewis WH, Yeger H, Bonetta L, Chan HS, Kang J, Junien C, et al. Homozygous deletion of a DNA marker from chromosome 11p13 in sporadic Wilms tumor. Genomics. 1988;3(1):25–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Compton DA, Weil MM, Bonetta L, Huang A, Jones C, Yeger H, et al. Definition of the limits of the Wilms tumor locus on human chromosome 11p13. Genomics. 1990;6(2):309–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Rose EA, Glaser T, Jones C, Smith CL, Lewis WH, Call KM, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell. 1990;60(3):495–508.PubMedCrossRefGoogle Scholar
  26. 26.
    Little MH, Dunn R, Byrne JA, Seawright A, Smith PJ, Pritchard-Jones K, et al. Equivalent expression of paternally and maternally inherited WT1 alleles in normal fetal tissue and Wilms’ tumours. Oncogene. 1992;7(4):635–41.PubMedGoogle Scholar
  27. 27.
    Kreidberg J. Kidneys and sex, the Wilms’ tumor connection. Pediatr Res. 2002;51(2):128.PubMedCrossRefGoogle Scholar
  28. 28.
    Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta. 2008;1785(1):55–62.PubMedGoogle Scholar
  29. 29.
    Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci U S A. 1991;88(21):9618–22.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Bruening W, Pelletier J. A non-AUG translational initiation event generates novel WT1 isoforms. J Biol Chem. 1996;271(15):8646–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Scharnhorst V, Dekker P, van der Eb AJ, Jochemsen AG. Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties. J Biol Chem. 1999;274(33):23456–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Natoli TA, McDonald A, Alberta JA, Taglienti ME, Housman DE, Kreidberg JA. A mammal-specific exon of WT1 is not required for development or fertility. Mol Cell Biol. 2002;22(12):4433–8.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Iben S, Royer-Pokora B. Analysis of native WT1 protein from frozen human kidney and Wilms’ tumors. Oncogene. 1999;18(15):2533–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Kudoh T, Ishidate T, Moriyama M, Toyoshima K, Akiyama T. G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes. Proc Natl Acad Sci U S A. 1995;92(10):4517–21.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106(3):319–29.PubMedCrossRefGoogle Scholar
  36. 36.
    Denys P, Malvaux P, Van Den Berghe H, Tanghe W, Proesmans W. [Association of an anatomo-pathological syndrome of male pseudohermaphroditism, Wilms’ tumor, parenchymatous nephropathy and XX/XY mosaicism]. Arch Fr Pediatr. 1967;24(7):729–39.PubMedGoogle Scholar
  37. 37.
    Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17(4):467–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene. 2001;273(2):141–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Hartwig S, Ho J, Pandey P, Macisaac K, Taglienti M, Xiang M, et al. Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development. 2010;137(7):1189–203.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Motamedi FJ, Badro DA, Clarkson M, Rita Lecca M, Bradford ST, Buske FA, et al. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nat Commun. 2014;5:4444.PubMedCrossRefGoogle Scholar
  41. 41.
    Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L, et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell. 2011;21(3):559–74.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB. The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev. 1993;40(1–2):85–97.PubMedCrossRefGoogle Scholar
  43. 43.
    van Heyningen V, Bickmore WA, Seawright A, Fletcher JM, Maule J, Fekete G, et al. Role for the Wilms tumor gene in genital development? Proc Natl Acad Sci U S A. 1990;87(14):5383–6.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D. Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev. 1991;5(8):1345–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol. 2009;332(2):273–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23(1):113–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development. 2003;130(14):3085–94.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Donovan MJ, Natoli TA, Sainio K, Amstutz A, Jaenisch R, Sariola H, et al. Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev Genet. 1999;24(3–4):252–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Moore AW, Schedl A, McInnes L, Doyle M, Hecksher-Sorensen J, Hastie ND. YAC transgenic analysis reveals Wilms’ tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech Dev. 1998;79(1–2):169–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Schedl A, Hastie N. Multiple roles for the Wilms’ tumour suppressor gene, WT1 in genitourinary development. Mol Cell Endocrinol. 1998;140(1–2):65–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999;126(9):1845–57.PubMedGoogle Scholar
  53. 53.
    Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest. 2011;121(1):174–83.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Li CM, Kim CE, Margolin AA, Guo M, Zhu J, Mason JM, et al. CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms’ tumors. Am J Pathol. 2004;165(6):1943–53.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Tycko B, Li CM, Buttyan R. The Wnt/beta-catenin pathway in Wilms tumors and prostate cancers. Curr Mol Med. 2007;7(5):479–89.PubMedCrossRefGoogle Scholar
  56. 56.
    Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosom Cancer. 2008;47(6):461–70.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Corbin M, de Reynies A, Rickman DS, Berrebi D, Boccon-Gibod L, Cohen-Gogo S, et al. WNT/beta-catenin pathway activation in Wilms tumors: a unifying mechanism with multiple entries? Genes Chromosom Cancer. 2009;48(9):816–27.PubMedCrossRefGoogle Scholar
  58. 58.
    Fukuzawa R, Heathcott RW, More HE, Reeve AE. Sequential WT1 and CTNNB1 mutations and alterations of beta-catenin localisation in intralobar nephrogenic rests and associated Wilms tumours: two case studies. J Clin Pathol. 2007;60(9):1013–6.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Fukuzawa R, Anaka MR, Weeks RJ, Morison IM, Reeve AE. Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene. 2009;28(8):1063–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Rivera MN, Kim WJ, Wells J, Stone A, Burger A, Coffman EJ, et al. The tumor suppressor WTX shuttles to the nucleus and modulates WT1 activity. Proc Natl Acad Sci U S A. 2009;106(20):8338–43.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Wegert J, Wittmann S, Leuschner I, Geissinger E, Graf N, Gessler M. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosom Cancer. 2009;48(12):1102–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim MS, Yoon SK, Bollig F, Kitagaki J, Hur W, Whye NJ, et al. A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway. J Biol Chem. 2010;285(19):14585–93.Google Scholar
  63. 63.
    Henry I, Grandjouan S, Couillin P, Barichard F, Huerre-Jeanpierre C, Glaser T, et al. Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci U S A. 1989;86(9):3247–51.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Henry I, Jeanpierre M, Couillin P, Barichard F, Serre JL, Journel H, et al. Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum Genet. 1989;81(3):273–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Baird PN, Groves N, Haber DA, Housman DE, Cowell JK. Identification of mutations in the WT1 gene in tumours from patients with the WAGR syndrome. Oncogene. 1992;7(11):2141–9.PubMedGoogle Scholar
  66. 66.
    Nordin M, Bergman D, Halje M, Engstrom W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif. 2014;47(3):189–99.PubMedCrossRefGoogle Scholar
  67. 67.
    Haruta M, Arai Y, Sugawara W, Watanabe N, Honda S, Ohshima J, et al. Duplication of paternal IGF2 or loss of maternal IGF2 imprinting occurs in half of Wilms tumors with various structural WT1 abnormalities. Genes Chromosom Cancer. 2008;47(8):712–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Fukuzawa R, Anaka MR, Heathcott RW, McNoe LA, Morison IM, Perlman EJ, et al. Wilms tumour histology is determined by distinct types of precursor lesions and not epigenetic changes. J Pathol. 2008;215(4):377–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Scott J, Cowell J, Robertson ME, Priestley LM, Wadey R, Hopkins B, et al. Insulin-like growth factor-II gene expression in Wilms’ tumour and embryonic tissues. Nature. 1985;317(6034):260–2.PubMedCrossRefGoogle Scholar
  70. 70.
    Bergman D, Halje M, Nordin M, Engstrom W. Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology. 2013;59(3):240–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Prawitt D, Enklaar T, Gartner-Rupprecht B, Spangenberg C, Lausch E, Reutzel D, et al. Microdeletion and IGF2 loss of imprinting in a cascade causing Beckwith-Wiedemann syndrome with Wilms’ tumor. Nat Genet. 2005;37(8):785–6. author reply 6–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Sun FL, Dean WL, Kelsey G, Allen ND, Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature. 1997;389(6653):809–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3(2):169–81.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Urbach A, Yermalovich A, Zhang J, Spina CS, Zhu H, Perez-Atayde AR, et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 2014;28(9):971–82.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Reddien PW. Lin28: time for tissue repair. Cell. 2013;155(4):738–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320(5872):97–100.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development. 2005;132(3):529–39.PubMedCrossRefGoogle Scholar
  78. 78.
    Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol. 2013;15(9):1035–44.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Murphy AJ, Pierce J, de Caestecker C, Libes J, Neblett D, de Caestecker M, et al. Aberrant activation, nuclear localization, and phosphorylation of Yes-associated protein-1 in the embryonic kidney and Wilms tumor. Pediatr Blood Cancer. 2014;61(2):198–205.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Fukuzawa R, Reeve AE. Molecular pathology and epidemiology of nephrogenic rests and Wilms tumors. J Pediatr Hematol Oncol. 2007;29(9):589–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Dome JS, Coppes MJ. Recent advances in Wilms tumor genetics. Curr Opin Pediatr. 2002;14(1):5–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Francke U, Holmes LB, Atkins L, Riccardi VM. Aniridia-Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet. 1979;24(3):185–92.PubMedCrossRefGoogle Scholar
  83. 83.
    Fantes JA, Bickmore WA, Fletcher JM, Ballesta F, Hanson IM, van Heyningen V. Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization. Am J Hum Genet. 1992;51(6):1286–94.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354(6354):522–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J, Seawright A, et al. The human PAX6 gene is mutated in two patients with aniridia. Nat Genet. 1992;1(5):328–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell. 1991;67(6):1059–74.PubMedCrossRefGoogle Scholar
  87. 87.
    Narahara K, Kikkawa K, Kimira S, Kimoto H, Ogata M, Kasai R, et al. Regional mapping of catalase and Wilms tumor – aniridia, genitourinary abnormalities, and mental retardation triad loci to the chromosome segment 11p1305–p1306. Hum Genet. 1984;66(2–3):181–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Crolla JA, Cawdery JE, Oley CA, Young ID, Gray J, Fantes J, et al. A FISH approach to defining the extent and possible clinical significance of deletions at the WAGR locus. J Med Genet. 1997;34(3):207–12.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Drash A, Sherman F, Hartmann WH, Blizzard RM. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr. 1970;76(4):585–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Royer-Pokora B, Beier M, Henzler M, Alam R, Schumacher V, Weirich A, et al. Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A. 2004;127A(3):249–57.PubMedCrossRefGoogle Scholar
  91. 91.
    Schumacher V, Scharer K, Wuhl E, Altrogge H, Bonzel KE, Guschmann M, et al. Spectrum of early onset nephrotic syndrome associated with WT1 missense mutations. Kidney Int. 1998;53(6):1594–600.PubMedCrossRefGoogle Scholar
  92. 92.
    Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res. 2001;264(1):74–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Bardeesy N, Zabel B, Schmitt K, Pelletier J. WT1 mutations associated with incomplete Denys-Drash syndrome define a domain predicted to behave in a dominant-negative fashion. Genomics. 1994;21(3):663–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Little MH, Williamson KA, Mannens M, Kelsey A, Gosden C, Hastie ND, et al. Evidence that WT1 mutations in Denys-Drash syndrome patients may act in a dominant-negative fashion. Hum Mol Genet. 1993;2(3):259–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Denamur E, Bocquet N, Baudouin V, Da Silva F, Veitia R, Peuchmaur M, et al. WT1 splice-site mutations are rarely associated with primary steroid-resistant focal and segmental glomerulosclerosis. Kidney Int. 2000;57(5):1868–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet. 1998;7(4):709–14.PubMedCrossRefGoogle Scholar
  97. 97.
    Ohlsson R, Nystrom A, Pfeifer-Ohlsson S, Tohonen V, Hedborg F, Schofield P, et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993;4(1):94–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Weksberg R, Shen DR, Fei YL, Song QL, Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993;5(2):143–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Hastie ND. The genetics of Wilms’ tumor – a case of disrupted development. Annu Rev Genet. 1994;28:523–58.PubMedCrossRefGoogle Scholar
  100. 100.
    Hu RJ, Lee MP, Connors TD, Johnson LA, Burn TC, Su K, et al. A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics. 1997;46(1):9–17.PubMedCrossRefGoogle Scholar
  101. 101.
    Lapunzina P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am J Med Genet C: Semin Med Genet. 2005;137C(1):53–71.CrossRefGoogle Scholar
  102. 102.
    Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43(9):705–15.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Hughes-Benzie RM, Pilia G, Xuan JY, Hunter AG, Chen E, Golabi M, et al. Simpson-Golabi-Behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet. 1996;66(2):227–34.PubMedCrossRefGoogle Scholar
  104. 104.
    Neri G, Gurrieri F, Zanni G, Lin A. Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet. 1998;79(4):279–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Pellegrini M, Pilia G, Pantano S, Lucchini F, Uda M, Fumi M, et al. Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn. 1998;213(4):431–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996;12(3):241–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Chitty LS, Clark T, Maxwell D. Perlman syndrome – a cause of enlarged, hyperechogenic kidneys. Prenat Diagn. 1998;18(11):1163–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Henneveld HT, van Lingen RA, Hamel BC, Stolte-Dijkstra I, van Essen AJ. Perlman syndrome: four additional cases and review. Am J Med Genet. 1999;86(5):439–46.PubMedCrossRefGoogle Scholar
  109. 109.
    Neri G, Martini-Neri ME, Katz BE, Opitz JM. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. Am J Med Genet. 1984;19(1):195–207.PubMedCrossRefGoogle Scholar
  110. 110.
    Perlman M. Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism, and multiple congenital anomalies. Am J Med Genet. 1986;25(4):793–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Hersh JH, Cole TR, Bloom AS, Bertolone SJ, Hughes HE. Risk of malignancy in Sotos syndrome. J Pediatr. 1992;120(4 Pt 1):572–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T, et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet. 2002;30(4):365–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Ellis NA, German J. Molecular genetics of Bloom’s syndrome. Hum Mol Genet. 1996;5 Spec No:1457–63.Google Scholar
  114. 114.
    Pujana MA, Nadal M, Gratacos M, Peral B, Csiszar K, Gonzalez-Sarmiento R, et al. Additional complexity on human chromosome 15q: identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res. 2001;11(1):98–111.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet. 1996;13(4):461–3.PubMedCrossRefGoogle Scholar
  116. 116.
    McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res. 1998;58(7):1387–90.PubMedGoogle Scholar
  117. 117.
    Rapley EA, Barfoot R, Bonaiti-Pellie C, Chompret A, Foulkes W, Perusinghe N, et al. Evidence for susceptibility genes to familial Wilms tumour in addition to WT1, FWT1 and FWT2. Br J Cancer. 2000;83(2):177–83.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    D’Angio GJ. The National Wilms Tumor Study: a 40 year perspective. Lifetime Data Anal. 2007;13(4):463–70.PubMedCrossRefGoogle Scholar
  119. 119.
    Metzger ML, Dome JS. Current therapy for Wilms’ tumor. Oncologist. 2005;10(10):815–26.PubMedCrossRefGoogle Scholar
  120. 120.
    D’Angio GJ, Breslow N, Beckwith JB, Evans A, Baum H, deLorimier A, et al. Treatment of Wilms’ tumor. results of the third National Wilms’ Tumor Study. Cancer. 1989;64(2):349–60.PubMedCrossRefGoogle Scholar
  121. 121.
    Tournade MF, Com-Nougue C, de Kraker J, Ludwig R, Rey A, Burgers JM, et al. Optimal duration of preoperative therapy in unilateral and nonmetastatic Wilms’ tumor in children older than 6 months: results of the Ninth International Society of Pediatric Oncology Wilms’ Tumor Trial and Study. J Clin Oncol. 2001;19(2):488–500.PubMedGoogle Scholar
  122. 122.
    Faria P, Beckwith JB, Mishra K, Zuppan C, Weeks DA, Breslow N, et al. Focal versus diffuse anaplasia in Wilms tumor – new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am J Surg Pathol. 1996;20(8):909–20.PubMedCrossRefGoogle Scholar
  123. 123.
    Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms’ Tumor Study. Cancer. 1978;41(5):1937–48.PubMedCrossRefGoogle Scholar
  124. 124.
    Green DM, Breslow NE, Beckwith JB, Moksness J, Finklestein JZ, D’Angio GJ. Treatment of children with clear-cell sarcoma of the kidney: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 1994;12(10):2132–7.PubMedGoogle Scholar
  125. 125.
    Dome JS, Cotton CA, Perlman EJ, Breslow NE, Kalapurakal JA, Ritchey ML, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol. 2006;24(15):2352–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Weeks DA, Beckwith JB, Mierau GW, Luckey DW. Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms’ Tumor Study Pathology Center. Am J Surg Pathol. 1989;13(6):439–58.PubMedCrossRefGoogle Scholar
  127. 127.
    Vujanic GM, Sandstedt B, Harms D, Kelsey A, Leuschner I, de Kraker J, et al. Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood. Med Pediatr Oncol. 2002;38(2):79–82.PubMedCrossRefGoogle Scholar
  128. 128.
    Pritchard-Jones K, Kelsey A, Vujanic G, Imeson J, Hutton C, Mitchell C, et al. Older age is an adverse prognostic factor in stage I, favorable histology Wilms’ tumor treated with vincristine monochemotherapy: a study by the United Kingdom Children’s Cancer Study Group, Wilm’s Tumor Working Group. J Clin Oncol. 2003;21(17):3269–75.PubMedCrossRefGoogle Scholar
  129. 129.
    Breslow N, Sharples K, Beckwith JB, Takashima J, Kelalis PP, Green DM, et al. Prognostic factors in nonmetastatic, favorable histology Wilms’ tumor. Results of the third National Wilms’ Tumor Study. Cancer. 1991;68(11):2345–53.PubMedCrossRefGoogle Scholar
  130. 130.
    Green DM, Breslow NE, Beckwith JB, Ritchey ML, Shamberger RC, Haase GM, et al. Treatment with nephrectomy only for small, stage I/favorable histology Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 2001;19(17):3719–24.PubMedGoogle Scholar
  131. 131.
    Grundy P, Breslow N, Green DM, Sharples K, Evans A, D’Angio GJ. Prognostic factors for children with recurrent Wilms’ tumor: results from the second and third National Wilms’ Tumor Study. J Clin Oncol. 1989;7(5):638–47.PubMedGoogle Scholar
  132. 132.
    Byrd RL, Evans AE, D’Angio GJ. Adult Wilms tumor: effect of combined therapy on survival. J Urol. 1982;127(4):648–51.PubMedGoogle Scholar
  133. 133.
    Reinhard H, Aliani S, Ruebe C, Stockle M, Leuschner I, Graf N. Wilms’ tumor in adults: results of the Society of Pediatric Oncology (SIOP) 93-01/Society for Pediatric Oncology and Hematology (GPOH) Study. J Clin Oncol. 2004;22(22):4500–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Arrigo S, Beckwith JB, Sharples K, D’Angio G, Haase G. Better survival after combined modality care for adults with Wilms’ tumor. A report from the National Wilms’ Tumor Study. Cancer. 1990;66(5):827–30.PubMedCrossRefGoogle Scholar
  135. 135.
    Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23(29):7312–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Dix D, et al., on behalf of the AREN0532 and AREN0533 Study Committees. Augmentation of therapy for favorable histology Wilms Tumor with combined loss of heterozygosity of chromosomes 1p and 16q: a report from the Children’s Oncology Group studies AREN0532 and AREN0533. ASCO Annual Meeting; June 2015.Google Scholar
  137. 137.
    Gratias EJ, Jennings LJ, Anderson JR, Dome JS, Grundy P, Perlman EJ. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Cancer. 2013;119(21):3887–94.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Gratias E, et al. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Abstract presented at 8th International Conference on Pediatric Renal Tumor Biology; 8–10 May 2013; BethesdaGoogle Scholar
  139. 139.
    Coppes MJ, Zandvoort SW, Sparling CR, Poon AO, Weitzman S, Blanchette VS. Acquired von Willebrand disease in Wilms’ tumor patients. J Clin Oncol. 1992;10(3):422–7.PubMedGoogle Scholar
  140. 140.
    Blanchette V, Coppes MJ. Routine bleeding history and laboratory tests in children presenting with a renal mass. Pediatr Blood Cancer. 2009;52(3):314–5.PubMedCrossRefGoogle Scholar
  141. 141.
    Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.PubMedCrossRefGoogle Scholar
  142. 142.
    Servaes S, Khanna G, Naranjo A, Geller JI, Ehrlich PF, Gow KW, et al. Comparison of diagnostic performance of CT and MRI for abdominal staging of pediatric renal tumors: a report from the Children’s Oncology Group. Pediatr Radiol. 2015;45(2):166–72.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Khanna G, Naranjo A, Hoffer F, Mullen E, Geller J, Gratias EJ, et al. Detection of preoperative Wilms tumor rupture with CT: a report from the Children’s Oncology Group. Radiology. 2013;266(2):610–7.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Malkan AD, Loh A, Bahrami A, Navid F, Coleman J, Green DM, et al. An approach to renal masses in pediatrics. Pediatrics. 2015;135(1):142–58.PubMedCrossRefGoogle Scholar
  145. 145.
    Shamberger RC, Guthrie KA, Ritchey ML, Haase GM, Takashima J, Beckwith JB, et al. Surgery-related factors and local recurrence of Wilms tumor in National Wilms Tumor Study 4. Ann Surg. 1999;229(2):292–7.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Jereb B, Tournade MF, Lemerle J, Voute PA, Delemarre JF, Ahstrom L, et al. Lymph node invasion and prognosis in nephroblastoma. Cancer. 1980;45(7):1632–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Othersen Jr HB, DeLorimer A, Hrabovsky E, Kelalis P, Breslow N, D’Angio GJ. Surgical evaluation of lymph node metastases in Wilms’ tumor. J Pediatr Surg. 1990;25(3):330–1.PubMedCrossRefGoogle Scholar
  148. 148.
    Ritchey M, Daley S, Shamberger RC, Ehrlich P, Hamilton T, Haase G, et al. Ureteral extension in Wilms’ tumor: a report from the National Wilms’ Tumor Study Group (NWTSG). J Pediatr Surg. 2008;43(9):1625–9.PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Ritchey ML, Kelalis PP, Etzioni R, Breslow N, Shochat S, Haase GM. Small bowel obstruction after nephrectomy for Wilms’ tumor. A report of the National Wilms’ Tumor Study-3. Ann Surg. 1993;218(5):654–9.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Godzinski J, Tournade MF, deKraker J, Lemerle J, Voute PA, Weirich A, et al. Rarity of surgical complications after postchemotherapy nephrectomy for nephroblastoma. Experience of the International Society of Paediatric Oncology-Trial and Study “SIOP-9”. International Society of Paediatric Oncology Nephroblastoma Trial and Study Committee. Eur J Pediatric Surg (Zeitschrift fur Kinderchirurgie). 1998;8(2):83–6.Google Scholar
  151. 151.
    D’Angio GJ, Evans AE, Breslow N, Beckwith B, Bishop H, Feigl P, et al. The treatment of Wilms’ tumor: results of the national Wilms’ tumor study. Cancer. 1976;38(2):633–46.PubMedCrossRefGoogle Scholar
  152. 152.
    Tournade MF, Com-Nougue C, Voute PA, Lemerle J, de Kraker J, Delemarre JF, et al. Results of the Sixth International Society of Pediatric Oncology Wilms’ Tumor Trial and Study: a risk-adapted therapeutic approach in Wilms’ tumor. J Clin Oncol. 1993;11(6):1014–23.PubMedGoogle Scholar
  153. 153.
    Jereb B, Burgers JM, Tournade MF, Lemerle J, Bey P, DeLemarre J, et al. Radiotherapy in the SIOP (International Society of Pediatric Oncology) nephroblastoma studies: a review. Med Pediatr Oncol. 1994;22(4):221–7.PubMedCrossRefGoogle Scholar
  154. 154.
    de Kraker J, Jones KP. Treatment of Wilms tumor: an international perspective. J Clin Oncol. 2005;23(13):3156–7. author reply 7–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Zoeller G, Pekrun A, Lakomek M, Ringert RH. Wilms tumor: the problem of diagnostic accuracy in children undergoing preoperative chemotherapy without histological tumor verification. J Urol. 1994;151(1):169–71.PubMedGoogle Scholar
  156. 156.
    Vujanic GM, Kelsey A, Mitchell C, Shannon RS, Gornall P. The role of biopsy in the diagnosis of renal tumors of childhood: results of the UKCCSG Wilms tumor study 3. Med Pediatr Oncol. 2003;40(1):18–22.PubMedCrossRefGoogle Scholar
  157. 157.
    Ritchey ML, Shamberger RC, Haase G, Horwitz J, Bergemann T, Breslow NE. Surgical complications after primary nephrectomy for Wilms’ tumor: report from the National Wilms’ Tumor Study Group. J Am Coll Surg. 2001;192(1):63–8. quiz 146.PubMedCrossRefGoogle Scholar
  158. 158.
    Gow KW, Barnhart DC, Hamilton TE, Kandel JJ, Chen MK, Ferrer FA, et al. Primary nephrectomy and intraoperative tumor spill: report from the Children’s Oncology Group (COG) renal tumors committee. J Pediatr Surg. 2013;48(1):34–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Dykes EH, Marwaha RK, Dicks-Mireaux C, Sams V, Risdon RA, Duffy PG, et al. Risks and benefits of percutaneous biopsy and primary chemotherapy in advanced Wilms’ tumour. J Pediatr Surg. 1991;26(5):610–2.PubMedCrossRefGoogle Scholar
  160. 160.
    Perlman EJ. Pediatric renal tumors: practical updates for the pathologist. Pediatr Dev Pathol. 2005;8(3):320–38.PubMedCrossRefGoogle Scholar
  161. 161.
    Green DM, Breslow NE, Beckwith JB, Finklestein JZ, Grundy P, Thomas PR, et al. Effect of duration of treatment on treatment outcome and cost of treatment for Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 1998;16(12):3744–51.PubMedGoogle Scholar
  162. 162.
    de Kraker J, Lemerle J, Voute PA, Zucker JM, Tournade MF, Carli M. Wilm’s tumor with pulmonary metastases at diagnosis: the significance of primary chemotherapy. International Society of Pediatric Oncology Nephroblastoma Trial and Study Committee. J Clin Oncol. 1990;8(7):1187–90.PubMedGoogle Scholar
  163. 163.
    Pritchard J, Imeson J, Barnes J, Cotterill S, Gough D, Marsden HB, et al. Results of the United Kingdom Children’s Cancer Study Group first Wilms’ Tumor Study. J Clin Oncol. 1995;13(1):124–33.PubMedGoogle Scholar
  164. 164.
    Baldeyrou P, Lemoine G, Zucker JM, Schweisguth O. Pulmonary metastases in children: the place of surgery. A study of 134 patients. J Pediatr Surg. 1984;19(2):121–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Green DM, Breslow NE, Ii Y, Grundy PE, Shochat SJ, Takashima J, et al. The role of surgical excision in the management of relapsed Wilms’ tumor patients with pulmonary metastases: a report from the National Wilms’ Tumor Study. J Pediatr Surg. 1991;26(6):728–33.PubMedCrossRefGoogle Scholar
  166. 166.
    Green DM, Beckwith JB, Breslow NE, Faria P, Moksness J, Finklestein JZ, et al. Treatment of children with stages II to IV anaplastic Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 1994;12(10):2126–31.PubMedGoogle Scholar
  167. 167.
    Verschuur A, Van Tinteren H, Graf N, Bergeron C, Sandstedt B, de Kraker J. Treatment of pulmonary metastases in children with stage IV nephroblastoma with risk-based use of pulmonary radiotherapy. J Clin Oncol. 2012;30(28):3533–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Ehrlich PF, Hamilton TE, Grundy P, Ritchey M, Haase G, Shamberger RC, et al. The value of surgery in directing therapy for patients with Wilms’ tumor with pulmonary disease. A report from the National Wilms’ Tumor Study Group (National Wilms’ Tumor Study 5). J Pediatric Surg. 2006;41(1):162–7; discussion 7.Google Scholar
  169. 169.
    Shamberger RC, Ritchey ML, Haase GM, Bergemann TL, Loechelt-Yoshioka T, Breslow NE, et al. Intravascular extension of Wilms tumor. Ann Surg. 2001;234(1):116–21.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Ritchey ML, Kelalis PP, Breslow N, Offord KP, Shochat SJ, D’Angio GJ. Intracaval and atrial involvement with nephroblastoma: review of National Wilms Tumor Study-3. J Urol. 1988;140(5 Pt 2):1113–8.PubMedGoogle Scholar
  171. 171.
    Lall A, Pritchard-Jones K, Walker J, Hutton C, Stevens S, Azmy A, et al. Wilms’ tumor with intracaval thrombus in the UK Children’s Cancer Study Group UKW3 trial. J Pediatr Surg. 2006;41(2):382–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Horwitz JR, Ritchey ML, Moksness J, Breslow NE, Smith GR, Thomas PR, et al. Renal salvage procedures in patients with synchronous bilateral Wilms’ tumors: a report from the National Wilms’ Tumor Study Group. J Pediatr Surg. 1996;31(8):1020–5.PubMedCrossRefGoogle Scholar
  173. 173.
    Davidoff AM, Giel DW, Jones DP, Jenkins JJ, Krasin MJ, Hoffer FA, et al. The feasibility and outcome of nephron-sparing surgery for children with bilateral Wilms tumor. The St Jude Children’s Research Hospital experience: 1999–2006. Cancer. 2008;112(9):2060–70.PubMedCrossRefGoogle Scholar
  174. 174.
    Arul GS, Gornall P. Is partial nephrectomy feasible in unilateral Wilms tumour? Results from the UKCCSG study (UKW-3). Pediatr Blood Cancer. 2004;43(7):792.PubMedCrossRefGoogle Scholar
  175. 175.
    Haecker FM, von Schweinitz D, Harms D, Buerger D, Graf N. Partial nephrectomy for unilateral Wilms tumor: results of study SIOP 93-01/GPOH. J Urol. 2003;170(3):939–42. discussion 43–4.PubMedCrossRefGoogle Scholar
  176. 176.
    Linni K, Urban C, Lackner H, Hollwarth ME. Nephron-sparing procedures in 11 patients with Wilms’ tumor. Pediatr Surg Int. 2003;19(6):457–62.PubMedCrossRefGoogle Scholar
  177. 177.
    Ferrer FA, Rosen N, Herbst K, Fernandez CV, Khanna G, Dome JS, et al. Image based feasibility of renal sparing surgery for very low risk unilateral Wilms tumors: a report from the Children’s Oncology Group. J Urol. 2013;190(5):1846–51.PubMedCrossRefGoogle Scholar
  178. 178.
    Borin JF. Laparoscopic radical nephrectomy: long-term outcomes. Curr Opin Urol. 2008;18(2):139–44.PubMedCrossRefGoogle Scholar
  179. 179.
    Iwanaka T, Arai M, Ito M, Kawashima H, Yamamoto K, Hanada R, et al. Surgical treatment for abdominal neuroblastoma in the laparoscopic era. Surg Endosc. 2001;15(7):751–4.PubMedCrossRefGoogle Scholar
  180. 180.
    Duarte RJ, Denes FT, Cristofani LM, Odone-Filho V, Srougi M. Further experience with laparoscopic nephrectomy for Wilms’ tumour after chemotherapy. BJU Int. 2006;98(1):155–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Duarte RJ, Denes FT, Cristofani LM, Giron AM, Filho VO, Arap S. Laparoscopic nephrectomy for Wilms tumor after chemotherapy: initial experience. J Urol. 2004;172(4 Pt 1):1438–40.PubMedCrossRefGoogle Scholar
  182. 182.
    Green DM. The treatment of stages I-IV favorable histology Wilms’ tumor. J Clin Oncol. 2004;22(8):1366–72.PubMedCrossRefGoogle Scholar
  183. 183.
    Green DM, Grigoriev YA, Nan B, Takashima JR, Norkool PA, D’Angio GJ, et al. Congestive heart failure after treatment for Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 2001;19(7):1926–34.PubMedGoogle Scholar
  184. 184.
    Abu-Ghosh AM, Krailo MD, Goldman SC, Slack RS, Davenport V, Morris E, et al. Ifosfamide, carboplatin and etoposide in children with poor-risk relapsed Wilms’ tumor: a Children’s Cancer Group report. Ann Oncol. 2002;13(3):460–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Metzger ML, Stewart CF, Freeman 3rd BB, Billups CA, Hoffer FA, Wu J, et al. Topotecan is active against Wilms’ tumor: results of a multi-institutional phase II study. J Clin Oncol. 2007;25(21):3130–6.PubMedCrossRefGoogle Scholar
  186. 186.
    Spreafico F, Bisogno G, Collini P, Jenkner A, Gandola L, D’Angelo P, et al. Treatment of high-risk relapsed Wilms tumor with dose-intensive chemotherapy, marrow-ablative chemotherapy, and autologous hematopoietic stem cell support: experience by the Italian Association of Pediatric Hematology and Oncology. Pediatr Blood Cancer. 2008;51(1):23–8.PubMedCrossRefGoogle Scholar
  187. 187.
    Feusner JH, Ritchey ML, Norkool PA, Takashima JR, Breslow NE, Green DM. Renal failure does not preclude cure in children receiving chemotherapy for Wilms tumor: a report from the National Wilms Tumor Study Group. Pediatr Blood Cancer. 2008;50(2):242–5.PubMedCrossRefGoogle Scholar
  188. 188.
    D’Angio GJ, Evans A, Breslow N, Beckwith B, Bishop H, Farewell V, et al. The treatment of Wilms’ tumor: results of the second National Wilms’ Tumor Study. Cancer. 1981;47(9):2302–11.PubMedCrossRefGoogle Scholar
  189. 189.
    Dix D, et al., on behalf of the AREN0533 Study Committee. Treatment of stage IV favorable histology Wilms tumor with complete lung nodule response after chemotherapy: a report from Children’s Oncology Group Study AREN0533. ASCO Annual Meeting; June 2015.Google Scholar
  190. 190.
    Choyke PL, Siegel MJ, Craft AW, Green DM, DeBaun MR. Screening for Wilms tumor in children with Beckwith-Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol. 1999;32(3):196–200.PubMedCrossRefGoogle Scholar
  191. 191.
    Green DM, Breslow NE, Beckwith JB, Norkool P. Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol. 1993;21(3):188–92.PubMedCrossRefGoogle Scholar
  192. 192.
    McNeil DE, Brown M, Ching A, DeBaun MR. Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol. 2001;37(4):349–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elizabeth Mullen
    • 1
  • Jordan Kreidberg
    • 2
  • Christopher B. Weldon
    • 3
  1. 1.Hematology OncologyDana-Farber/Boston Children’s Blood Disorders and Cancer CenterBostonUSA
  2. 2.Children’s Hospital BostonBostonUSA
  3. 3.Department of SurgeryBoston Children’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations