Inherited Glomerular Diseases

  • Michelle N. Rheault
  • Clifford E. Kashtan
Living reference work entry


In recent years, the determined efforts of numerous investigators and the dedicated participation of patients, families, and clinicians have led to the mapping and identification of numerous genetic loci involved in inherited glomerular disease and the functional characterization of their protein products. This information has generated important insights into the cell-cell and cell-matrix interactions required for normal glomerular structure and function, and the mechanisms by which genetically programmed disruptions in these interactions produce disease phenotypes. Additionally, our ability to predict prognosis and provide accurate genetic counseling has been greatly enhanced by this expansion of our knowledge base.

Inherited glomerular diseases can be roughly divided into two categories based on clinical presentation. Hematuria is typically the initial symptom of inherited diseases of glomerular basement membranes, with the exception of Pierson syndrome. In patients with inherited podocyte diseases, the predominant clinical abnormality at presentation is proteinuria. This chapter will focus on inherited diseases of glomerular basement membranes, particularly Alport syndrome and thin basement membrane nephropathy, which together account for 30–50 % of children with isolated glomerular hematuria referred to pediatric nephrology clinics for consultation.


Glomerular Basement Membrane Alport Syndrome COL4A5 Mutation Thin Basement Membrane Nephropathy Pierson Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Trachtman H, Weiss R, Bennett B, Griefer I. Isolated hematuria in children: indications for a renal biopsy. Kidney Int. 1984;25:94–9.PubMedGoogle Scholar
  2. 2.
    Schroder CH, Bontemps CM, Assmann KJM, Schuurmans-Stekhoven JH, Foidart JM, Monnens LAH, et al. Renal biopsy and family studies in 65 children with isolated hematuria. Acta Paediatr Scand. 1990;79:630–6.PubMedGoogle Scholar
  3. 3.
    Piqueras AI, White RH, Raafat F, Moghal N, Milford DV. Renal biopsy diagnosis in children presenting with hematuria. Pediatr Nephrol. 1998;12:386–91.PubMedGoogle Scholar
  4. 4.
    Miner JH. The glomerular basement membrane. Exp Cell Res. 2012;318(9):973–8.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Hudson BG. The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol. 2004;15(10):2514–27.PubMedGoogle Scholar
  6. 6.
    Yoshioka K, Hino S, Takemura T, Maki S, Wieslander J, Takekoshi Y, et al. Type IV Collagen a5 chain: normal distribution and abnormalities in X-linked Alport syndrome revealed by monoclonal antibody. Am J Pathol. 1994;144:986–96.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Peissel B, Geng L, Kalluri R, Kashtan C, Rennke HG, Gallo GR, et al. Comparative distribution of the a1(IV), a5(IV) and a6(IV) collagen chains in normal human adult and fetal tissues and in kidneys from X-linked Alport syndrome patients. J Clin Invest. 1995;96:1948–57.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Poschl E, Pollner R, Kuhn K. The genes for the alpha 1(IV) and alpha 2(IV) chains of human basement membrane collagen type IV are arranged head-to-head and separated by a bidirectional promoter of unique structure. EMBO J. 1988;7(9):2687–95.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Segal Y, Zhuang L, Rondeau E, Sraer JD, Zhou J. Regulation of the paired type IV collagen genes COL4A5 and COL4A6. Role of the proximal promoter region. J Biol Chem. 2001;276(15):11791–7.PubMedGoogle Scholar
  10. 10.
    Guthrie LG. “Idiopathic”, or congenital, hereditary and familial hematuria. Lancet. 1902;1:1243–6.Google Scholar
  11. 11.
    Hurst AF. Hereditary familial congenital haemorrhagic nephritis occurring in sixteen individuals in three generations. Guy’s Hosp Rep. 1923;3:368–70.Google Scholar
  12. 12.
    Alport AC. Hereditary familial congenital haemorrhagic nephritis. Br Med J. 1927;1:504–6.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Hinglais N, Grunfeld J-P, Bois LE. Characteristic ultrastructural lesion of the glomerular basement membrane in progressive hereditary nephritis (Alport’s syndrome). Lab Invest. 1972;27:473–87.PubMedGoogle Scholar
  14. 14.
    Spear GS, Slusser RJ. Alport’s syndrome: emphasizing electron microscopic studies of the glomerulus. Am J Pathol. 1972;69:213–22.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Churg J, Sherman RL. Pathologic characteristics of hereditary nephritis. Arch Pathol. 1973;95:374–9.PubMedGoogle Scholar
  16. 16.
    Kashtan C, Fish AJ, Kleppel M, Yoshioka K, Michael AF. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis. J Clin Invest. 1986;78:1035–44.PubMedCentralPubMedGoogle Scholar
  17. 17.
    McCoy RC, Johnson HK, Stone WJ, Wilson CB. Absence of nephritogenic GBM antigen(s) in some patients with hereditary nephritis. Kidney Int. 1982;21:642–52.PubMedGoogle Scholar
  18. 18.
    Olson DL, Anand SK, Landing BH, Heuser E, Grushkin CM, Lieberman E. Diagnosis of hereditary nephritis by failure of glomeruli to bind anti-glomerular basement membrane antibodies. J Pediatr. 1980;96:697–9.PubMedGoogle Scholar
  19. 19.
    Atkin CL, Hasstedt SJ, Menlove L, Cannon L, Kirschner N, Schwartz C, et al. Mapping of Alport syndrome to the long arm of the X chromosome. Am J Hum Genet. 1988;42:249–55.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Hostikka SL, Eddy RL, Byers MG, Hoyhtya M, Shows TB, Tryggvason K. Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc Natl Acad Sci USA. 1990;87(4):1606–10.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248:1224–7.PubMedGoogle Scholar
  22. 22.
    Gunwar S, Ballester F, Noelken ME, Sado Y, Ninomiya Y, Hudson BG. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J Biol Chem. 1998;273(15):8767–75.PubMedGoogle Scholar
  23. 23.
    Rheault MN, Kren SM, Hartich LA, Wall M, Thomas W, Mesa HA, et al. X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome. Nephrol Dial Transplant. 2010;25(3):764–9.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol. 2013;24:1945–54.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Pescucci C, Mari F, Longo I, Vogiatzi P, Caselli R, Scala E, et al. Autosomal-dominant Alport syndrome: natural history of a disease due to COL4A3 or COL4A4 gene. Kidney Int. 2004;65(5):1598–603.PubMedGoogle Scholar
  26. 26.
    Fallerini C, Dosa L, Tita R, Del Prete D, Feriozzi S, Gai G, et al. Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clin Genet. 2014;86:252–7.PubMedGoogle Scholar
  27. 27.
    Moriniere V, Dahan K, Hilbert P, Lison M, Lebbah S, Topa A, et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J Am Soc Nephrol. 2014;25:2740–51.Google Scholar
  28. 28.
    Crockett DK, Pont-Kingdon G, Gedge F, Sumner K, Seamons R, Lyon E. The Alport syndrome COL4A5 variant database. Hum Mutat. 2010;31(8):E1652–7.PubMedGoogle Scholar
  29. 29.
    Lemmink HH, Schroder CH, Monnens LA, Smeets HJ. The clinical spectrum of type IV collagen mutations. Hum Mutat. 1997;9(6):477–99.PubMedGoogle Scholar
  30. 30.
    Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, et al. X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol. 2000;11(4):649–57.PubMedGoogle Scholar
  31. 31.
    Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counseling. Nephrol Dial Transplant. 2002;17:1218–27.PubMedGoogle Scholar
  32. 32.
    Tsiakkis D, Pieri M, Koupepidou P, Demosthenous P, Panayidou K, Deltas C. Genotype-phenotype correlation in X-linked Alport syndrome patients carrying missense mutations in the collagenous domain of COL4A5. Clin Genet. 2012;82(3):297–9.PubMedGoogle Scholar
  33. 33.
    Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet. 1994;8(1):77–81.PubMedGoogle Scholar
  34. 34.
    Lemmink HH, Mochizuki T, van den Heuvel LP, Schroder CH, Barrientos A, Monnens LA, et al. Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet. 1994;3(8):1269–73.PubMedGoogle Scholar
  35. 35.
    Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, et al. COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int. 2002;61(6):1947–56.PubMedGoogle Scholar
  36. 36.
    Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol. 2003;14:2603–10.PubMedGoogle Scholar
  37. 37.
    Pochet JM, Bobrie G, Landais P, Goldfarb B, Grunfeld JP. Renal prognosis in Alport’s and related syndromes: influence of the mode of inheritance. Nephrol Dial Transplant. 1989;4(12):1016–21.PubMedGoogle Scholar
  38. 38.
    Colville DJ, Savige J. Alport syndrome. A review of the ocular manifestations. Ophthalmic Genet. 1997;18(4):161–73.PubMedGoogle Scholar
  39. 39.
    Gubler M, Levy M, Broyer M, Naizot C, Gonzales G, Perrin D, et al. Alport’s syndrome: a report of 58 cases and a review of the literature. Am J Med. 1981;70:493–505.PubMedGoogle Scholar
  40. 40.
    Kashtan CE, Ding J, Gregory M, Gross O, Heidet L, Knebelmann B, et al. Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol. 2013;28(1):5–11.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Kim KH, Kim Y, Gubler MC, Steffes MW, Lane PH, Kashtan CE, et al. Structural-functional relationships in Alport syndrome. J Am Soc Nephrol. 1995;5(9):1659–68.PubMedGoogle Scholar
  42. 42.
    Rheault MN. Women and Alport syndrome. Pediatr Nephrol. 2012;27(1):41–6.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Grunfeld J-P, Noel LH, Hafez S, Droz D. Renal prognosis in women with hereditary nephritis. Clin Nephrol. 1985;23:267–71.PubMedGoogle Scholar
  44. 44.
    Savige J, Liu J, DeBuc DC, Handa JT, Hageman GS, Wang YY, et al. Retinal basement membrane abnormalities and the retinopathy of Alport syndrome. Invest Ophthalmol Vis Sci. 2010;51(3):1621–7.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Rhys C, Snyers B, Pirson Y. Recurrent corneal erosion associated with Alport’s syndrome. Kidney Int. 1997;52:208–11.PubMedGoogle Scholar
  46. 46.
    Burke JP, Clearkin LG, Talbot JF. Recurrent corneal epithelial erosions in Alport’s syndrome. Acta Ophthalmol. 1991;69:555–7.Google Scholar
  47. 47.
    Teekhasaenee C, Nimmanit S, Wutthiphan S, Vareesangthip K, Laohapand T, Malasitr P, et al. Posterior polymorphous dystrophy and Alport syndrome. Ophthalmology. 1991;98:1207–15.PubMedGoogle Scholar
  48. 48.
    Tan R, Colville D, Wang YY, Rigby L, Savige J. Alport retinopathy results from “severe” COL4A5 mutations and predicts early renal failure. Clin J Am Soc Nephrol. 2010;5(1):34–8.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Zhou J, Mochizuki T, Smeets H, Antignac C, Laurila P, de Paepe A, et al. Deletion of the paired a5(IV) and a6(IV) collagen genes in inherited smooth muscle tumors. Science. 1993;261:1167–9.PubMedGoogle Scholar
  50. 50.
    Antignac C, Heidet L. Mutations in Alport syndrome associated with diffuse esophageal leiomyomatosis. Contrib Nephrol. 1996;117:172–82.PubMedGoogle Scholar
  51. 51.
    Heidet L, Cai Y, Sado Y, Ninomiya Y, Thorner P, Guicharnaud L, et al. Diffuse leiomyomatosis associated with X-linked Alport syndrome: extracellular matrix study using immunohistochemistry and in situ hybridization. Lab Invest. 1997;76(2):233–43.PubMedGoogle Scholar
  52. 52.
    Jonsson JJ, Renieri A, Gallagher PG, Kashtan CE, Cherniske EM, Bruttini M, et al. Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome? J Med Genet. 1998;35(4):273–8.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Vitelli F, Piccini M, Caroli F, Franco B, Malandrini A, Pober B, et al. Identification and characterization of a highly conserved protein absent in the Alport syndrome (A), mental retardation (M), midface hypoplasia (M), and elliptocytosis (E) contiguous gene deletion syndrome (AMME). Genomics. 1999;55(3):335–40.PubMedGoogle Scholar
  54. 54.
    Kashtan CE, Segal Y, Flinter F, Makanjuola D, Gan JS, Watnick T. Aortic abnormalities in males with Alport syndrome. Nephrol Dial Transplant. 2010;25(11):3554–60.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Kashtan CE, Gubler MC, Sisson-Ross S, Mauer M. Chronology of renal scarring in males with Alport syndrome. Pediatr Nephrol. 1998;12(4):269–74.PubMedGoogle Scholar
  56. 56.
    Rumpelt HJ. Hereditary nephropathy (Alport syndrome): correlation of clinical data with glomerular basement membrane alterations. Clin Nephrol. 1980;13(5):203–7.PubMedGoogle Scholar
  57. 57.
    Kashtan CE, Kleppel MM, Gubler MC. Immunohistologic findings in Alport syndrome. Contrib Nephrol. 1996;117:142–53.PubMedGoogle Scholar
  58. 58.
    Gubler MC, Knebelmann B, Beziau A, Broyer M, Pirson Y, Haddoum F, et al. Autosomal recessive Alport syndrome: immunohistochemical study of type IV collagen chain distribution. Kidney Int. 1995;47(4):1142–7.PubMedGoogle Scholar
  59. 59.
    van der Loop FT, Monnens LA, Schroder CH, Lemmink HH, Breuning MH, Timmer ED, et al. Identification of COL4A5 defects in Alport’s syndrome by immunohistochemistry of skin. Kidney Int. 1999;55(4):1217–24.PubMedGoogle Scholar
  60. 60.
    Massella L, Onetti Muda A, Faraggiana T, Bette C, Renieri A, Rizzoni G. Epidermal basement membrane alpha 5(IV) expression in females with Alport syndrome and severity of renal disease. Kidney Int. 2003;64(5):1787–91.PubMedGoogle Scholar
  61. 61.
    Wester DC, Atkin CL, Gregory MC. Alport syndrome: clinical update. J Am Acad Audiol. 1995;6:73–9.PubMedGoogle Scholar
  62. 62.
    Cosgrove D, Samuelson G, Meehan DT, Miller C, McGee J, Walsh EJ, et al. Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model of autosomal Alport syndrome. Hear Res. 1998;121:84–98.PubMedGoogle Scholar
  63. 63.
    Harvey SJ, Mount R, Sado Y, Naito I, Ninomiya Y, Harrison R, et al. The inner ear of dogs with X-linked nephritis provides clues to the pathogenesis of hearing loss in X-linked Alport syndrome. Am J Pathol. 2001;159(3):1097–104.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kleppel MM, Santi PA, Cameron JD, Wieslander J, Michael AF. Human tissue distribution of novel basement membrane collagen. Am J Pathol. 1989;134:813–25.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Zehnder AF, Adams JC, Santi PA, Kristiansen AG, Wacharasindhu C, Mann S, et al. Distribution of type IV collagen in the cochlea in Alport syndrome. Arch Otolaryngol Head Neck Surg. 2005;131:1007–13.PubMedGoogle Scholar
  66. 66.
    Merchant SN, Burgess BJ, Adams JC, Kashtan CE, Gregory MC, Santi PA, et al. Temporal bone histopathology in Alport syndrome. Laryngoscope. 2004;114(9):1609–18.PubMedGoogle Scholar
  67. 67.
    Cheong HI, Kashtan CE, Kim Y, Kleppel MM, Michael AF. Immunohistologic studies of type IV collagen in anterior lens capsules of patients with Alport syndrome. Lab Invest. 1994;70:553–7.PubMedGoogle Scholar
  68. 68.
    Ohkubo S, Takeda H, Higashide T, Ito M, Sakurai M, Shirao Y, et al. Immunohistochemical and molecular genetic evidence for type IV collagen alpha 5 chain abnormality in the anterior lenticonus associated with Alport syndrome. Arch Ophthalmol. 2003;121(6):846–50.PubMedGoogle Scholar
  69. 69.
    Chen L, Miyamura N, Ninomiya Y, Handa JT. Distribution of the collagen IV isoforms in human Bruch’s membrane. Br J Ophthalmol. 2003;87(2):212–5.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Gyoneva L, Segal Y, Dorfman KD, Barocas VH. Mechanical response of wild-type and Alport murine lens capsules during osmotic swelling. Exp Eye Res. 2013;113:87–91.PubMedGoogle Scholar
  71. 71.
    Sonarkhan S, Ramappa M, Chaurasia S, Mulay K. Bilateral anterior lenticonus in a case of Alport syndrome: a clinical and histopathological correlation after successful clear lens extraction. BMJ Case Rep. 2014 doi:10.1136/bcr-2013-202036.Google Scholar
  72. 72.
    Kato T, Watanabe Y, Nakayasu K, Kanai A, Yajima Y. The ultrastructure of the lens capsule abnormalities in Alport’s syndrome. Jpn J Ophthalmol. 1998;42:401–5.PubMedGoogle Scholar
  73. 73.
    Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest. 2014;124(6):2325–32.PubMedGoogle Scholar
  74. 74.
    Redahan L, Doyle R, O’Shaughnessy M, Dorman A, Little M, Conlon P. Familial MPGN – a case series: a clinical description of familial membranoproliferative glomerulonephritis amongst three Irish families. Ren Fail. 2014;36(8):1333–6.PubMedGoogle Scholar
  75. 75.
    Martin P, Heiskari N, Zhou J, Leinonen A, Tumelius T, Hertz JM, et al. High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing. J Am Soc Nephrol. 1998;9:2291–301.PubMedGoogle Scholar
  76. 76.
    Gross O, Schulze-Lohoff E, Koepke ML, Beirowski B, Addicks K, Bloch W, et al. Antifibrotic, nephroprotective potential of ACE inhibitor vs AT1 antagonist in a murine model of renal fibrosis. Nephrol Dial Transplant. 2004;19(7):1716–23.PubMedGoogle Scholar
  77. 77.
    Gross O, Beirowski B, Koepke ML, Kuck J, Reiner M, Addicks K, et al. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int. 2003;63(2):438–46.PubMedGoogle Scholar
  78. 78.
    Gross O, Koepke ML, Beirowski B, Schulze-Lohoff E, Segerer S, Weber M. Nephroprotection by antifibrotic and anti-inflammatory effects of the vasopeptidase inhibitor AVE7688. Kidney Int. 2005;68:456–63.PubMedGoogle Scholar
  79. 79.
    Sayers R, Kalluri R, Rodgers KD, Shield CF, Meehan DT, Cosgrove D. Role for transforming growth factor-beta 1 in Alport renal disease progression. Kidney Int. 1999;56:1662–73.PubMedGoogle Scholar
  80. 80.
    Ninichuk V, Gross O, Reichel C, Kandoga A, Pawar RD, Ciubar R, et al. Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. J Am Soc Nephrol. 2005;16:977–85.PubMedGoogle Scholar
  81. 81.
    Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol. 2003;285(6):F1060–7.PubMedGoogle Scholar
  82. 82.
    Zeisberg M, Khurana M, Rao VH, Cosgrove D, Rougier JP, Werner MC, et al. Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med. 2006;3(4):e100.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A. 2006;103(19):7321–6.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Gross O, Borza DB, Anders HJ, Licht C, Weber M, Segerer S, et al. Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrol Dial Transplant. 2009;24(3):731–4.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Chen D, Jefferson B, Harvey SJ, Zheng K, Gartley CJ, Jacobs RM, et al. Cyclosporine a slows the progressive renal disease of Alport syndrome (X-linked hereditary nephritis): results from a canine model. J Am Soc Nephrol. 2003;14(3):690–8.PubMedGoogle Scholar
  86. 86.
    Callis L, Vila A, Carrera M, Nieto J. Long-term effects of cyclosporine A in Alport’s syndrome. Kidney Int. 1999;55(3):1051–6.PubMedGoogle Scholar
  87. 87.
    Charbit M, Gubler MC, Dechaux M, Gagnadoux MF, Grunfeld JP, Niaudet P. Cyclosporin therapy in patients with Alport syndrome. Pediatr Nephrol. 2007;22(1):57–63.PubMedGoogle Scholar
  88. 88.
    Massella L, Muda AO, Legato A, Di Zazzo G, Giannakakis K, Emma F. Cyclosporine A treatment in patients with Alport syndrome: a single-center experience. Pediatr Nephrol. 2010;25(7):1269–75.PubMedGoogle Scholar
  89. 89.
    Cohen EP, Lemann J. In hereditary nephritis angiotensin-converting enzyme inhibition decreases proteinuria and may slow the rate of progression. Am J Kidney Dis. 1996;27:199–203.PubMedGoogle Scholar
  90. 90.
    Proesmans W, Van Dyck M. Enalapril in children with Alport syndrome. Pediatr Nephrol. 2004;19(3):271–5.PubMedGoogle Scholar
  91. 91.
    Webb NJ, Lam C, Shahinfar S, Strehlau J, Wells TG, Gleim GW, et al. Efficacy and safety of losartan in children with Alport syndrome – results from a subgroup analysis of a prospective, randomized, placebo- or amlodipine-controlled trial. Nephrol Dial Transplant. 2011;26(8):2521–6.PubMedGoogle Scholar
  92. 92.
    Webb NJ, Shahinfar S, Wells TG, Massaad R, Gleim GW, McCrary Sisk C, et al. Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatr Nephrol. 2013;28(5):737–43.PubMedGoogle Scholar
  93. 93.
    Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tonshoff B, et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012;81(5):494–501.PubMedGoogle Scholar
  94. 94.
    Gross O, Friede T, Hilgers R, Gorlitz A, Gavenis K, Ahmed R, et al. Safety and efficacy of the ACE-inhibitor ramipril in Alport syndrome: the double-blind, randomized, placebo-controlled, multicenter phase III EARLY PRO-TECT Alport trial in pediatric patients. ISRN Pediatr. 2012;2012:436046.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Temme J, Kramer A, Jager KJ, Lange K, Peters F, Muller GA, et al. Outcomes of male patients with Alport syndrome undergoing renal replacement therapy. Clin J Am Soc Nephrol. 2012;7(12):1969–76.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Gross O, Weber M, Fries JW, Muller GA. Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport syndrome: long-term risk, benefit and outcome. Nephrol Dial Transplant. 2009;24(5):1626–30.PubMedGoogle Scholar
  97. 97.
    Kashtan CE. Renal transplantation in patients with Alport syndrome. Pediatr Transplant. 2006;10(6):651–7.PubMedGoogle Scholar
  98. 98.
    Brainwood D, Kashtan C, Gubler MC, Turner AN. Targets of alloantibodies in Alport anti-glomerular basement membrane disease after renal transplantation. Kidney Int. 1998;53:762–6.PubMedGoogle Scholar
  99. 99.
    Dehan P, Van Den Heuvel LPWJ, Smeets HJM, Tryggvason K, Foidart J-M. Identification of post-transplant anti-a5(IV) collagen alloantibodies in X-linked Alport syndrome. Nephrol Dial Transplant. 1996;11:1983–8.PubMedGoogle Scholar
  100. 100.
    Kalluri R, van den Heuvel LP, Smeets HJM, Schroder CH, Lemmink HH, Boutaud A, et al. A COL4A3 gene mutation and post-transplant anti-a3(IV) collagen alloantibodies in Alport syndrome. Kidney Int. 1995;47:1199–204.PubMedGoogle Scholar
  101. 101.
    Wang XP, Fogo AB, Colon S, Giannico G, Abul-Ezz SR, Miner JH, et al. Distinct epitopes for anti-glomerular basement membrane Alport alloantibodies and goodpasture autoantibodies within the noncollagenous domain of {alpha}3(IV) collagen: a janus-faced antigen. J Am Soc Nephrol. 2005;16:3563–71.PubMedGoogle Scholar
  102. 102.
    Marks MI, Drummond KN. Benign familial hematuria. Pediatrics. 1969;44:590–3.PubMedGoogle Scholar
  103. 103.
    McConville JM, West CD, McAdams AJ. Familial and nonfamilial benign hematuria. J Pediatr. 1966;69:207–14.PubMedGoogle Scholar
  104. 104.
    Pardo V, Berian MG, Levi DF, Strauss J. Benign primary hematuria: clinicopathologic study of 65 patients. Am J Med. 1979;67:817–22.PubMedGoogle Scholar
  105. 105.
    Aarons I, Smith PS, Davies RA, Woodroffe AJ, Clarkson AR. Thin membrane nephropathy: a clinico-pathological study. Clin Nephrol. 1989;32(4):151–8.PubMedGoogle Scholar
  106. 106.
    Tiebosch ATMG, Frederik PM, van Breda Vriesman PJC, Mooy JMV, van Rie H, van de Wiel TWM, et al. Thin-basement-membrane nephropathy in adults with persistent hematuria. N Engl J Med. 1989;320:14–8.PubMedGoogle Scholar
  107. 107.
    Haas M. Thin glomerular basement membrane nephropathy: incidence in 3471 consecutive renal biopsies examined by electron microscopy. Arch Pathol Lab Med. 2006;130(5):699–706.PubMedGoogle Scholar
  108. 108.
    Tryggvason K, Patrakka J. Thin basement membrane nephropathy. J Am Soc Nephrol. 2006;17(3):813–22.PubMedGoogle Scholar
  109. 109.
    Gregory MC. The clinical features of thin basement membrane nephropathy. Semin Nephrol. 2005;25(3):140–5.PubMedGoogle Scholar
  110. 110.
    Auwardt R, Savige J, Wilson D. A comparison of the clinical and laboratory features of thin basement membrane disease (TBMD) and IgA glomerulonephritis (IgA GN). Clin Nephrol. 1999;52(1):1–4.PubMedGoogle Scholar
  111. 111.
    Nieuwhof CM, de Heer F, de Leeuw P, van Breda Vriesman PJ. Thin GBM nephropathy: premature glomerular obsolescence is associated with hypertension and late onset renal failure. Kidney Int. 1997;51(5):1596–601.PubMedGoogle Scholar
  112. 112.
    van Paassen P, van Breda Vriesman PJ, van Rie H, Tervaert JW. Signs and symptoms of thin basement membrane nephropathy: a prospective regional study on primary glomerular disease-The Limburg Renal Registry. Kidney Int. 2004;66(3):909–13.PubMedGoogle Scholar
  113. 113.
    Voskarides K, Damianou L, Neocleous V, Zouvani I, Christodoulidou S, Hadjiconstantinou V, et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol. 2007;18(11):3004–16.PubMedGoogle Scholar
  114. 114.
    Vogler C, McAdams AJ, Homan SM. Glomerular basement membrane and lamina densa in infants and children: an ultrastructural evaluation. Pediatr Pathol. 1987;7:527–34.PubMedGoogle Scholar
  115. 115.
    Steffes MW, Barbosa J, Basgen JM, Sutherland DER, Najarian JS, Mauer SM. Quantitative glomerular morphology of the normal human kidney. Kidney Int. 1983;49:82–6.Google Scholar
  116. 116.
    Lang S, Stevenson B, Risdon RA. Thin basement membrane nephropathy as a cause of recurrent haematuria in childhood. Histopathology. 1990;16:331–7.PubMedGoogle Scholar
  117. 117.
    Milanesi C, Rizzoni G, Braggion F, Galdiolo D. Electron microscopy for measurement of glomerular basement membrane width in children with benign familial hematuria. Appl Pathol. 1984;2:199–204.PubMedGoogle Scholar
  118. 118.
    Dische FE. Measurement of glomerular basement membrane thickness and its application to the diagnosis of thin-membrane nephropathy. Arch Pathol Lab Med. 1992;116:43–9.PubMedGoogle Scholar
  119. 119.
    Gubler MC, Beaufils H, Noel LH, Habib R. Significance of thin glomerular basement membranes in hematuric children. Contrib Nephrol. 1990;80:147–56.PubMedGoogle Scholar
  120. 120.
    Pettersson E, Tornroth T, Wieslander J. Abnormally thin glomerular basement membrane and the Goodpasture epitope. Clin Nephrol. 1990;33:105–9.PubMedGoogle Scholar
  121. 121.
    Blumenthal SS, Fritsche C, Lemann J. Establishing the diagnosis of benign familial hematuria: the importance of examining the urine sediment of family members. JAMA. 1988;259:2263–6.PubMedGoogle Scholar
  122. 122.
    Jefferson JA, Lemmink HH, Hughes AE, Hill CM, Smeets HJ, Doherty CC, et al. Autosomal dominant Alport syndrome linked to the type IV collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol Dial Transplant. 1997;12(8):1595–9.PubMedGoogle Scholar
  123. 123.
    Plaisier E, Chen Z, Gekeler F, Benhassine S, Dahan K, Marro B, et al. Novel COL4A1 mutations associated with HANAC syndrome: a role for the triple helical CB3[IV] domain. Am J Med Genet A. 2010;152A(10):2550–5.PubMedGoogle Scholar
  124. 124.
    Weng YC, Sonni A, Labelle-Dumais C, de Leau M, Kauffman WB, Jeanne M, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol. 2012;71(4):470–7.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Zhang KW, Tonna S, Wang YY, Rana K, Padavarat S, Savige J. Do mutations in COL4A1 or COL4A2 cause thin basement membrane nephropathy (TBMN)? Pediatr Nephrol. 2007;22(5):645–51.PubMedGoogle Scholar
  126. 126.
    Pierson M, Cordier J, Hervouuet F, Rauber G. [An unusual congenital and familial congenital malformative combination involving the eye and kidney]. J Genet Hum. 1963;12:184–213.PubMedGoogle Scholar
  127. 127.
    Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13(21):2625–32.PubMedGoogle Scholar
  128. 128.
    Hofstaetter C, Neumann I, Lennert T, Dudenhausen JW. Prenatal diagnosis of diffuse mesangial glomerulosclerosis by ultrasonography: a longitudinal study of a case in an affected family. Fetal Diagn Ther. 1996;11(2):126–31.PubMedGoogle Scholar
  129. 129.
    Glastre C, Cochat P, Bouvier R, Colon S, Cottin X, Giffon D, et al. Familial infantile nephrotic syndrome with ocular abnormalities. Pediatr Nephrol. 1990;4(4):340–2.PubMedGoogle Scholar
  130. 130.
    Swietlinski J, Maruniak-Chudek I, Niemir ZI, Wozniak A, Wilinska M, Zacharzewska J. A case of atypical congenital nephrotic syndrome. Pediatr Nephrol. 2004;19(3):349–52.PubMedGoogle Scholar
  131. 131.
    Mohney BG, Pulido JS, Lindor NM, Hogan MC, Consugar MB, Peters J, et al. A novel mutation of LAMB2 in a multigenerational mennonite family reveals a new phenotypic variant of Pierson syndrome. Ophthalmology. 2011;118(6):1137–44.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Matejas V, Hinkes B, Alkandari F, Al-Gazali L, Annexstad E, Aytac MB, et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat. 2010;31(9):992–1002.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Jarad G, Cunningham J, Shaw AS, Miner JH. Proteinuria precedes podocyte abnormalities inLamb2−/− mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest. 2006;116(8):2272–9.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Mino RA, Mino VH, Livingstone RG. Osseous dysplasia and dystrophy of the nails; review of the literature and report of a case. Am J Roentgenol Radium Ther. 1948;60(5):633–41.PubMedGoogle Scholar
  135. 135.
    Hawkins CF, Smith OE. Renal dysplasia in a family with multiple hereditary abnormalities including iliac horns. Lancet. 1950;1(6609):803–8.PubMedGoogle Scholar
  136. 136.
    Sweeney E, Fryer A, Mountford R, Green A, McIntosh I. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet. 2003;40(3):153–62.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Bongers EM, Huysmans FT, Levtchenko E, de Rooy JW, Blickman JG, Admiraal RJ, et al. Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur J Hum Genet. 2005;13(8):935–46.PubMedGoogle Scholar
  138. 138.
    Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet. 1998;19(1):51–5.PubMedGoogle Scholar
  139. 139.
    Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19(1):47–50.PubMedGoogle Scholar
  140. 140.
    Vollrath D, Jaramillo-Babb VL, Clough MV, McIntosh I, Scott KM, Lichter PR, et al. Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome. Hum Mol Genet. 1998;7(7):1091–8.PubMedGoogle Scholar
  141. 141.
    Hamlington JD, Jones C, McIntosh I. Twenty-two novel LMX1B mutations identified in nail patella syndrome (NPS) patients. Hum Mutat. 2001;18(5):458.PubMedGoogle Scholar
  142. 142.
    Knoers NV, Bongers EM, van Beersum SE, Lommen EJ, van Bokhoven H, Hol FA. Nail-patella syndrome: identification of mutations in the LMX1B gene in Dutch families. J Am Soc Nephrol. 2000;11(9):1762–6.PubMedGoogle Scholar
  143. 143.
    McIntosh I, Dreyer SD, Clough MV, Dunston JA, Eyaid W, Roig CM, et al. Mutation analysis of LMX1B gene in nail-patella syndrome patients. Am J Hum Genet. 1998;63(6):1651–8.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Dreyer SD, Morello R, German MS, Zabel B, Winterpacht A, Lunstrum GP, et al. LMX1B transactivation and expression in nail-patella syndrome. Hum Mol Genet. 2000;9(7):1067–74.PubMedGoogle Scholar
  145. 145.
    Morello R, Zhou G, Dreyer SD, Harvey SJ, Ninomiya Y, Thorner PS, et al. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet. 2001;27(2):205–8.PubMedGoogle Scholar
  146. 146.
    Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest. 2002;109(8):1065–72.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Rohr C, Prestel J, Heidet L, Hosser H, Kriz W, Johnson RL, et al. The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J Clin Invest. 2002;109(8):1073–82.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Heidet L, Bongers EM, Sich M, Zhang SY, Loirat C, Meyrier A, et al. In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. Am J Pathol. 2003;163(1):145–55.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Burghardt T, Kastner J, Suleiman H, Rivera-Milla E, Stepanova N, Lottaz C, et al. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. J Am Soc Nephrol. 2013;24(11):1830–48.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Boyer O, Woerner S, Yang F, Oakeley EJ, Linghu B, Gribouval O, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol. 2013;24(8):1216–22.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Sweeney E, Fryer AE, Mountford RC, Green AJ, McIntosh I. Nail patella syndrome: a study of 123 patients from 43 British families and the detection of 16 novel mutations of LMX1B. Am J Hum Genet. 2001;69(4):189.Google Scholar
  152. 152.
    Bongers EM, Gubler MC, Knoers NV. Nail-patella syndrome. Overview on clinical and molecular findings. Pediatr Nephrol. 2002;17(9):703–12.PubMedGoogle Scholar
  153. 153.
    Ben-Bassat M, Cohen L, Rosenfeld J. The glomerular basement membrane in the nail-patella syndrome. Arch Pathol. 1971;92(5):350–5.PubMedGoogle Scholar
  154. 154.
    Hoyer JR, Michael AF, Vernier RL. Renal disease in nail-patella syndrome: clinical and morphologic studies. Kidney Int. 1972;2(4):231–8.PubMedGoogle Scholar
  155. 155.
    Ikeda K, Yokoyama H, Tomosugi N, Kida H, Ooshima A, Kobayashi K. Primary glomerular fibrosis: a new nephropathy caused by diffuse intra-glomerular increase in atypical type III collagen fibers. Clin Nephrol. 1990;33(4):155–9.PubMedGoogle Scholar
  156. 156.
    Gubler MC, Dommergues JP, Foulard M, Bensman A, Leroy JP, Broyer M, et al. Collagen type III glomerulopathy: a new type of hereditary nephropathy. Pediatr Nephrol. 1993;7(4):354–60.PubMedGoogle Scholar
  157. 157.
    Salcedo JR. An autosomal recessive disorder with glomerular basement membrane abnormalities similar to those seen in the nail patella syndrome: report of a kindred. Am J Med Genet. 1984;19(3):579–84.PubMedGoogle Scholar
  158. 158.
    Imbasciati E, Gherardi G, Morozumi K, Gudat F, Epper R, Basler V, et al. Collagen type III glomerulopathy: a new idiopathic glomerular disease. Am J Nephrol. 1991;11(5):422–9.PubMedGoogle Scholar
  159. 159.
    Epstein CJ, Sahud MA, Piel CF, Goodman JR, Bernfield MR, Kushner JH, et al. Hereditary macrothrombocytopathia, nephritis and deafness. Am J Med. 1972;52(3):299–310.PubMedGoogle Scholar
  160. 160.
    Peterson LC, Rao KV, Crosson JT, White JG. Fechtner syndrome – a variant of Alport’s syndrome with leukocyte inclusions and macrothrombocytopenia. Blood. 1985;65(2):397–406.PubMedGoogle Scholar
  161. 161.
    Clare NM, Montiel MM, Lifschitz MD, Bannayan GA. Alport’s syndrome associated with macrothrombopathic thrombocytopenia. Am J Clin Pathol. 1979;72(1):111–7.PubMedGoogle Scholar
  162. 162.
    Naito I, Nomura S, Inoue S, Kagawa M, Kawai S, Gunshin Y, et al. Normal distribution of collagen IV in renal basement membranes in Epstein’s syndrome. J Clin Pathol. 1997;50(11):919–22.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Toren A, Amariglio N, Rozenfeld-Granot G, Simon AJ, Brok-Simoni F, Pras E, et al. Genetic linkage of autosomal-dominant Alport syndrome with leukocyte inclusions and macrothrombocytopenia (Fechtner syndrome) to chromosome 22q11-13. Am J Hum Genet. 1999;65(6):1711–7.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Toren A, Rozenfeld-Granot G, Rocca B, Epstein CJ, Amariglio N, Laghi F, et al. Autosomal-dominant giant platelet syndromes: a hint of the same genetic defect as in Fechtner syndrome owing to a similar genetic linkage to chromosome 22q11-13. Blood. 2000;96(10):3447–51.PubMedGoogle Scholar
  165. 165.
    Lalwani AK, Goldstein JA, Kelley MJ, Luxford W, Castelein CM, Mhatre AN. Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet. 2000;67(5):1121–8.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Hegglin/Fechtner Syndrome Consortium. Nat Genet. 2000;26(1):103–5.PubMedGoogle Scholar
  167. 167.
    Seri M, Pecci A, Di Bari F, Cusano R, Savino M, Panza E, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine. 2003;82(3):203–15.PubMedGoogle Scholar
  168. 168.
    Seri M, Savino M, Bordo D, Cusano R, Rocca B, Meloni I, et al. Epstein syndrome: another renal disorder with mutations in the nonmuscle myosin heavy chain 9 gene. Hum Genet. 2002;110(2):182–6.PubMedGoogle Scholar
  169. 169.
    Arrondel C, Vodovar N, Knebelmann B, Grunfeld JP, Gubler MC, Antignac C, et al. Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am Soc Nephrol. 2002;13(1):65–74.PubMedGoogle Scholar
  170. 170.
    Najafian B, Mauer M, Hopkin RJ, Svarstad E. Renal complications of Fabry disease in children. Pediatr Nephrol. 2013;28(5):679–87.PubMedGoogle Scholar
  171. 171.
    Weidemann F, Kramer J, Duning T, Lenders M, Canaan-Kuhl S, Krebs A, et al. Patients with Fabry disease after enzyme replacement therapy dose reduction versus treatment switch. J Am Soc Nephrol. 2014;25(4):837–49.PubMedGoogle Scholar
  172. 172.
    Desnick RJ, Banikazemi M, Wasserstein M. Enzyme replacement therapy for Fabry disease, an inherited nephropathy. Clin Nephrol. 2002;57(1):1–8.PubMedGoogle Scholar
  173. 173.
    Germain DP, Waldek S, Banikazemi M, Bushinsky DA, Charrow J, Desnick RJ, et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol. 2007;18(5):1547–57.PubMedGoogle Scholar
  174. 174.
    Maroteaux P, Humbel R, Strecker G, Michalski JC, Mande R. A new type of sialidosis with kidney disease: nephrosialidosis. I. Clinical, radiological and nosological study. Arch Fr Pediatr. 1978;35(8):819–29.PubMedGoogle Scholar
  175. 175.
    Chen W, Yang S, Shi H, Guan W, Dong Y, Wang Y, et al. Histological studies of renal biopsy in a boy with nephrosialidosis. Ultrastruct Pathol. 2011;35(4):168–71.PubMedGoogle Scholar
  176. 176.
    Kashtan CE, Nevins TE, Posalaky Z, Vernier RL, Fish AJ. Proteinuria in a child with sialidosis: case report and histological studies. Pediatr Nephrol. 1989;3(2):166–74.PubMedGoogle Scholar
  177. 177.
    Faraggiana T, Churg J. Renal lipidoses: a review. Hum Pathol. 1987;18(7):661–79.PubMedGoogle Scholar
  178. 178.
    Varga J, Wohlgethan JR. The clinical and biochemical spectrum of hereditary amyloidosis. Semin Arthritis Rheum. 1988;18(1):14–28.PubMedGoogle Scholar
  179. 179.
    Portincasa P, Scaccianoce G, Palasciano G. Familial Mediterranean fever: a fascinating model of inherited autoinflammatory disorder. Eur J Clin Invest. 2013;43(12):1314–27.PubMedGoogle Scholar
  180. 180.
    Dode C, Cuisset L, Delpech M, Grateau G. TNFRSF1A-associated periodic syndrome (TRAPS), Muckle-Wells syndrome (MWS) and renal amyloidosis. J Nephrol. 2003;16(3):435–7.PubMedGoogle Scholar
  181. 181.
    Levy M, Gubler MC, Hadchouel M, Niaudet P, Habib R, Odievre M. [Alpha-1-antitrypsin deficiency and renal involvement]. Nephrologie. 1985;6(2):65–70.PubMedGoogle Scholar
  182. 182.
    Davis ID, Burke B, Freese D, Sharp HL, Kim Y. The pathologic spectrum of the nephropathy associated with alpha 1-antitrypsin deficiency. Hum Pathol. 1992;23(1):57–62.PubMedGoogle Scholar
  183. 183.
    Montanelli A, Mainardi E, Pini L, Corda L, Grassi V. Alpha-1-antitrypsin deficiency and nephropathy. Nephron. 2002;90(1):114–5.PubMedGoogle Scholar
  184. 184.
    Morris H, Morgan MD, Wood AM, Smith SW, Ekeowa UI, Herrmann K, et al. ANCA-associated vasculitis is linked to carriage of the Z allele of alpha(1) antitrypsin and its polymers. Ann Rheum Dis. 2011;70(10):1851–6.PubMedGoogle Scholar
  185. 185.
    Elzouki AN, Lindgren S, Nilsson S, Veress B, Eriksson S. Severe alpha1-antitrypsin deficiency (PiZ homozygosity) with membranoproliferative glomerulonephritis and nephrotic syndrome, reversible after orthotopic liver transplantation. J Hepatol. 1997;26(6):1403–7.PubMedGoogle Scholar
  186. 186.
    Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16(3):243–51.PubMedGoogle Scholar
  187. 187.
    McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–73.PubMedCentralPubMedGoogle Scholar
  188. 188.
    Kamath BM, Podkameni G, Hutchinson AL, Leonard LD, Gerfen J, Krantz ID, et al. Renal anomalies in Alagille syndrome: a disease-defining feature. Am J Med Genet A. 2012;158A(1):85–9.PubMedGoogle Scholar
  189. 189.
    Habib R, Dommergues JP, Gubler MC, Hadchouel M, Gautier M, Odievre M, et al. Glomerular mesangiolipidosis in Alagille syndrome (arteriohepatic dysplasia). Pediatr Nephrol. 1987;1(3):455–64.PubMedGoogle Scholar
  190. 190.
    Gjone E. Familial lecithin:cholesterol acyltransferase deficiency – a new metabolic disease with renal involvement. Adv Nephrol Necker Hosp. 1981;10:167–85.PubMedGoogle Scholar
  191. 191.
    Hirashio S, Ueno T, Naito T, Masaki T. Characteristic kidney pathology, gene abnormality and treatments in LCAT deficiency. Clin Exp Nephrol. 2014;18(2):189–93.PubMedGoogle Scholar
  192. 192.
    Rajpal JS, Mapel-Lentz J, Mancera AD, Reed RC, Kim Y, Chavers BM. Familial LCAT deficiency in a child with nephrotic syndrome. Clin Nephrol. 2014;82:211–4.Google Scholar
  193. 193.
    Saito T, Sato H, Kudo K, Oikawa S, Shibata T, Hara Y, et al. Lipoprotein glomerulopathy: glomerular lipoprotein thrombi in a patient with hyperlipoproteinemia. Am J Kidney Dis. 1989;13(2):148–53.PubMedGoogle Scholar
  194. 194.
    Liao MT, Tsai IJ, Cheng HT, Lin WC, Chang YW, Lin YH, et al. A rare cause of childhood-onset nephrotic syndrome: lipoprotein glomerulopathy. Clin Nephrol. 2012;78(3):237–40.PubMedGoogle Scholar
  195. 195.
    Saito T, Matsunaga A, Ito K, Nakashima H. Topics in lipoprotein glomerulopathy: an overview. Clin Exp Nephrol. 2014;18(2):214–7.PubMedGoogle Scholar
  196. 196.
    Miyata T, Sugiyama S, Nangaku M, Suzuki D, Uragami K, Inagi R, et al. Apolipoprotein E2/E5 variants in lipoprotein glomerulopathy recurred in transplanted kidney. J Am Soc Nephrol. 1999;10(7):1590–5.PubMedGoogle Scholar
  197. 197.
    Oikawa S, Matsunaga A, Saito T, Sato H, Seki T, Hoshi K, et al. Apolipoprotein E Sendai (arginine 145→proline): a new variant associated with lipoprotein glomerulopathy. J Am Soc Nephrol. 1997;8(5):820–3.PubMedGoogle Scholar
  198. 198.
    Storm T, Zeitz C, Cases O, Amsellem S, Verroust PJ, Madsen M, et al. Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome. BMC Med Genet. 2013;14:111.PubMedCentralPubMedGoogle Scholar
  199. 199.
    Grasbeck R. Imerslund-Grasbeck syndrome (selective vitamin B(12) malabsorption with proteinuria). Orphanet J Rare Dis. 2006;1:17.PubMedCentralPubMedGoogle Scholar
  200. 200.
    Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med. 2010;362(13):1181–91.PubMedCentralPubMedGoogle Scholar
  201. 201.
    Gherardi R, Belghiti-Deprez D, Hirbec G, Bouche P, Weil B, Lagrue G. Focal glomerulosclerosis associated with Charcot-Marie-Tooth disease. Nephron. 1985;40(3):357–61.PubMedGoogle Scholar
  202. 202.
    Paul MD, Fernandez D, Pryse-Phillips W, Gault MH. Charcot-Marie-Tooth disease and nephropathy in a mother and daughter with a review of the literature. Nephron. 1990;54(1):80–5.PubMedGoogle Scholar
  203. 203.
    Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G, et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med. 2011;365(25):2377–88.PubMedGoogle Scholar
  204. 204.
    Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience. 2007;145(4):1388–96.PubMedCentralPubMedGoogle Scholar
  205. 205.
    Hirooka M, Hirota M, Kamada M. Renal lesions in Cockayne syndrome. Pediatr Nephrol. 1988;2(2):239–43.PubMedGoogle Scholar
  206. 206.
    Shinohara O, Kubota C, Kimura M, Nishimura G, Takahashi S. Essential osteolysis associated with nephropathy, corneal opacity, and pulmonary stenosis. Am J Med Genet. 1991;41(4):482–6.PubMedGoogle Scholar
  207. 207.
    Green JS, Parfrey PS, Harnett JD, Farid NR, Cramer BC, Johnson G, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med. 1989;321(15):1002–9.PubMedGoogle Scholar
  208. 208.
    Harnett JD, Green JS, Cramer BC, Johnson G, Chafe L, McManamon P, et al. The spectrum of renal disease in Laurence-Moon-Biedl syndrome. N Engl J Med. 1988;319(10):615–8.PubMedGoogle Scholar
  209. 209.
    M’Hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of Bardet-Biedl syndrome. Mol Syndromol. 2014;5(2):51–6.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Marshall JD, Maffei P, Collin GB, Naggert JK. Alstrom syndrome: genetics and clinical overview. Curr Genomics. 2011;12(3):225–35.PubMedCentralPubMedGoogle Scholar
  211. 211.
    Goldstein JL, Fialkow PJ. The Alstrom syndrome Report of three cases with further delineation of the clinical, pathophysiological, and genetic aspects of the disorder. Medicine. 1973;52(1):53–71.PubMedGoogle Scholar
  212. 212.
    Elkayam L, Matalon A, Tseng CH, Axelrod F. Prevalence and severity of renal disease in familial dysautonomia. Am J Kidney Dis. 2006;48(5):780–6.PubMedGoogle Scholar
  213. 213.
    Strom EH, Banfi G, Krapf R, Abt AB, Mazzucco G, Monga G, et al. Glomerulopathy associated with predominant fibronectin deposits: a newly recognized hereditary disease. Kidney Int. 1995;48(1):163–70.PubMedGoogle Scholar
  214. 214.
    Assmann KJ, Koene RA, Wetzels JF. Familial glomerulonephritis characterized by massive deposits of fibronectin. Am J Kidney Dis. 1995;25(5):781–91.PubMedGoogle Scholar
  215. 215.
    Gemperle O, Neuweiler J, Reutter FW, Hildebrandt F, Krapf R. Familial glomerulopathy with giant fibrillar (fibronectin-positive) deposits: 15-year follow-up in a large kindred. Am J Kidney Dis. 1996;28(5):668–75.PubMedGoogle Scholar
  216. 216.
    Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, et al. Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci USA. 2008;105(7):2538–43.PubMedCentralPubMedGoogle Scholar
  217. 217.
    Vollmer M, Jung M, Ruschendorf F, Ruf R, Wienker T, Reis A, et al. The gene for human fibronectin glomerulopathy maps to 1q32, in the region of the regulation of complement activation gene cluster. Am J Hum Genet. 1998;63(6):1724–31.PubMedCentralPubMedGoogle Scholar
  218. 218.
    Otsuka Y, Takeda A, Horike K, Inaguma D, Goto N, Watarai Y, et al. A recurrent fibronectin glomerulopathy in a renal transplant patient: a case report. Clin Transplant. 2012;26 Suppl 24:58–63.PubMedGoogle Scholar
  219. 219.
    Emma F, Bertini E, Salviati L, Montini G. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 2012;27(4):539–50.PubMedCentralPubMedGoogle Scholar
  220. 220.
    Seidowsky A, Hoffmann M, Glowacki F, Dhaenens CM, Devaux JP, de Sainte Foy CL, et al. Renal involvement in MELAS syndrome – a series of 5 cases and review of the literature. Clin Nephrol. 2013;80(6):456–63.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Pediatric NephrologyUniversity of Minnesota Masonic Children’s HospitalMinneapolisUSA

Personalised recommendations