Renal Tubular Development

  • Michel Baum
Living reference work entry


The nephron is faced with the enormous task of maintaining a constant composition and volume of the extracellular fluid. The amount of electrolytes and water ingested and absorbed must be eliminated, and the waste products from metabolism must be also be excreted. This challenge is all the more complex as our dietary intake is quite variable from day to day. Despite this variable intake, there is virtually no change in the volume or composition of the extracellular fluid volume from day to day.


Proximal Tubule Apical Membrane Basolateral Membrane Brush Border Membrane Phosphate Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sabolic I, Valenti G, Verbavatz J-M, Van Hoek AN, Verkman AS, Ausiello DA, Brown D. Localization of the CHIP28 water channel in rat kidney. Am J Physiol. 1992;263:C1225–33.PubMedGoogle Scholar
  2. 2.
    Imai M, Kokko JP. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J Clin Invest. 1976;58:1054–60.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Developmental expression of CLC-K1 in the postnatal rat kidney. Histochem Cell Biol. 2001;116:49–56.PubMedGoogle Scholar
  4. 4.
    Kokko JP, Rector Jr FC. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 1972;2:214–23.PubMedGoogle Scholar
  5. 5.
    Sands JM, Kokko JP. Countercurrent system. Kidney Int. 1990;38:695–9.PubMedGoogle Scholar
  6. 6.
    Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem. 1998;273:4296–9.PubMedGoogle Scholar
  7. 7.
    Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol. 1995;269:G467–75.PubMedGoogle Scholar
  8. 8.
    Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol. 1998;60:121–42.PubMedGoogle Scholar
  9. 9.
    Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol. 2000;279:G250–4.PubMedGoogle Scholar
  10. 10.
    Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol. 2002;283:C142–7.PubMedGoogle Scholar
  11. 11.
    Colegio OR, Itallie CV, Rahner C, Anderson JM. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol. 2003;284:C1346–54.PubMedGoogle Scholar
  12. 12.
    Corman B, Di Stefano A. Does water drag solutes through kidney proximal tubule? Pflugers Arch. 1983;397:35–41.PubMedGoogle Scholar
  13. 13.
    Jacobson HR, Kokko JP, Seldin DW, Holmberg C. Lack of solvent drag of NaCl and NaHCO3 in rabbit proximal tubules. Am J Physiol. 1982;243:F342–8.PubMedGoogle Scholar
  14. 14.
    Quigley R, Baum M. Developmental changes in rabbit proximal straight tubule paracellular permeability. Am J Physiol Renal Physiol. 2002;283:F525–31.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Quigley R, Flynn M, Baum M. Neonatal and adult rabbit renal brush border membrane vesicle solute reflection coefficients. Biol Neonate. 1999;76:106–13.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Aperia A. 2011 Homer Smith Award: to serve and protect: classic and novel roles for Na+, K+ − adenosine triphosphatase. J Am Soc Nephrol. 2012;23:1283–90.PubMedGoogle Scholar
  17. 17.
    Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol. 1998;275:F633–50.PubMedGoogle Scholar
  18. 18.
    Rivard CJ, Almeida NE, Berl T, Capasso JM. The gamma subunit of Na/K-ATPase: an exceptional, small transmembrane protein. Front Biosci. 2005;10:2604–10.PubMedGoogle Scholar
  19. 19.
    Farman N. Na, K-pump expression and distribution in the nephron. Miner Electrolyte Metab. 1996;22:272–8.PubMedGoogle Scholar
  20. 20.
    Orlowski J, Lingrel JB. Tissue-specific and developmental regulation of rat Na, K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem. 1988;263:10436–42.PubMedGoogle Scholar
  21. 21.
    McDonough AA, Geering K, Farley RA. The sodium pump needs its beta subunit. FASEB J. 1990;4:1598–605.PubMedGoogle Scholar
  22. 22.
    Aperia A, Bertorello A, Seri I. Dopamine causes inhibition of Na+-K+-ATPase activity in rat proximal convoluted segments. Am J Physiol. 1987;252:F39–45.PubMedGoogle Scholar
  23. 23.
    Bertorello AM, Katz AI. Short-term regulation of renal Na-K-ATPase activity: physiological relevance and cellular mechanisms. Am J Physiol. 1993;265:F743–55.PubMedGoogle Scholar
  24. 24.
    Ewart HS, Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 1995;269:C295–311.PubMedGoogle Scholar
  25. 25.
    Fukuda Y, Bertorello A, Aperia A. Ontogeny of the regulation of Na+, K(+)-ATPase activity in the renal proximal tubule cell. Pediatr Res. 1991;30:131–4.PubMedGoogle Scholar
  26. 26.
    Katz AI, Satoh T, Takemoto F, Cohen HT. Novel pathways of Na-K-ATPase regulation in kidney cells. Contrib Nephrol. 1993;101:7–11.PubMedGoogle Scholar
  27. 27.
    McDonough AA, Farley RA. Regulation of Na,K-ATPase activity. Curr Opin Nephrol Hypertens. 1993;2:725–34.PubMedGoogle Scholar
  28. 28.
    Nakhoul F, Thompson CB, McDonough AA. Developmental change in Na, K-ATPase alpha1 and beta1 expression in normal and hypothyroid rat renal cortex. Am J Nephrol. 2000;20:225–31.PubMedGoogle Scholar
  29. 29.
    Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. I. Role of cyclic AMP and phospholipase A2. J Clin Invest. 1992;89:1496–500.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Satoh T, Cohen HT, Katz AI. Regulation of renal Na-K-ATPase by eicosanoids: central role of the cytochrome P450-monooxygenase pathway. Trans Assoc Am Physicians. 1992;105:86–92.PubMedGoogle Scholar
  31. 31.
    Satoh T, Cohen HT, Katz AI. Different mechanisms of renal Na-K-ATPase regulation by protein kinases in proximal and distal nephron. Am J Physiol. 1993;265:F399–405.PubMedGoogle Scholar
  32. 32.
    Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. II. Role of eicosanoids. J Clin Invest. 1993;91:409–15.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Satoh T, Ominato M, Cohen HT, Katz AI. Role of the phospholipase C-protein kinase C pathway in proximal tubule Na-K-ATPase regulation. Trans Assoc Am Physicians. 1993;106:196–200.PubMedGoogle Scholar
  34. 34.
    Takemoto F, Cohen HT, Satoh T, Katz AI. Dopamine inhibits Na/K-ATPase in single tubules and cultured cells from distal nephron. Pflugers Arch. 1992;421:302–6.PubMedGoogle Scholar
  35. 35.
    Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol. 1981;240:F536–44.PubMedGoogle Scholar
  36. 36.
    Kaplan JH. Biochemistry of Na,K-ATPase. Annu Rev Biochem. 2002;71:511–35.PubMedGoogle Scholar
  37. 37.
    Aperia A, Larrson L. Induced development of proximal tubular NaKATPase, basolateral cell membranes and fluid reabsorption. Acta Physiol Scand. 1984;121:133–41.PubMedGoogle Scholar
  38. 38.
    Aperia A, Larrson L, Zetterstrom R. Hormonal induction of Na-K-ATPase in developing proximal tubular cells. Am J Physiol. 1981;241:F356–60.PubMedGoogle Scholar
  39. 39.
    Schmidt U, Horster M. Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol. 1977;233:F55–60.PubMedGoogle Scholar
  40. 40.
    Schwartz GH, Evan AP. Development of solute transport in rabbit proximal tubule. III. Na-K-ATPase activity. Am J Physiol. 1984;246:F845–52.PubMedGoogle Scholar
  41. 41.
    Wang ZM, Yasui M, Celsi G. Glucocorticoids regulate the transcription of Na(+)-K(+)-ATPase genes in the infant rat kidney. Am J Physiol. 1994;267:C450–5.PubMedGoogle Scholar
  42. 42.
    Harris RC, Seifter JL, Lechene C. Coupling of Na-H exchange and Na-K pump activity in cultured rat proximal tubule cells. Am J Physiol. 1986;251:C815–24.PubMedGoogle Scholar
  43. 43.
    Larsson SH, Rane S, Fukuda Y, Aperia A, Lechene C. Changes in Na influx precede post-natal increase in Na, K-ATPase activity in rat renal proximal tubular cells. Acta Physiol Scand. 1990;138:99–100.PubMedGoogle Scholar
  44. 44.
    Cramb G, Cutler CP, Lamb JF, McDevitt T, Ogden PH, Owler D, Voy C. The effects of monensin on the abundance of mRNA(alpha) and of sodium pumps in human cultured cells. Q J Exp Physiol. 1989;74:53–63.PubMedGoogle Scholar
  45. 45.
    Fukuda Y, Aperia A. Differentiation of Na+ − K+ pump in rat proximal tubule is modulated by Na+ − H+ exchanger. Am J Physiol. 1988;255:F552–7.PubMedGoogle Scholar
  46. 46.
    Baum M, Dwarakanath V, Alpern RJ, Moe OW. Effects of thyroid hormone on the neonatal renal cortical Na+/H+ antiporter. Kidney Int. 1998;53:1254–8.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Henning SJ. Plasma concentrations of total and free corticosterone during development in the rat. Am J Physiol. 1978;235:E451–6.PubMedGoogle Scholar
  48. 48.
    Henning SJ, Leeper LL, Dieu DN. Circulating corticosterone in the infant rat: the mechanism of age and thyroxine effects. Pediatr Res. 1986;20:87–92.PubMedGoogle Scholar
  49. 49.
    Walker P, Dubois JD, Dussault JH. Free thyroid hormone concentrations during postnatal development in the rat. Pediatr Res. 1980;14:247–9.PubMedGoogle Scholar
  50. 50.
    Capasso G, Lin JT, De Santo NG, Kinne R. Short term effect of low doses of tri-iodothyronine on proximal tubular membrane Na-K-ATPase and potassium permeability in thyroidectomized rats. Pflugers Arch. 1985;403:90–6.PubMedGoogle Scholar
  51. 51.
    Celsi G, Nishi A, Akusjarvi G, Aperia A. Abundance of Na(+)-K(+)-ATPase mRNA is regulated by glucocorticoid hormones in infant rat kidneys. Am J Physiol. 1991;260:F192–7.PubMedGoogle Scholar
  52. 52.
    Celsi G, Wang ZM, Akusjarvi G, Aperia A. Sensitive periods for glucocorticoids’ regulation of Na+, K(+)-ATPase mRNA in the developing lung and kidney. Pediatr Res. 1993;33:5–9.PubMedGoogle Scholar
  53. 53.
    Garg LC, Tisher CC. Effects of thyroid hormone on Na-K-adenosine triphosphatase activity along the rat nephron. J Lab Clin Med. 1985;106:568–72.PubMedGoogle Scholar
  54. 54.
    Horster M, Valtin H. Postnatal development of renal function: micropuncture and clearance studies in the dog. J Clin Invest. 1971;50:779–95.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Kon V, Hughes ML, Ichikawa I. Physiologic basis for the maintenance of glomerulotubular balance in young growing rats. Kidney Int. 1984;25:391–6.PubMedGoogle Scholar
  56. 56.
    Spitzer A, Brandis M. Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J Clin Invest. 1974;53:279–87.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Merlet-Benichou C, Pegorier M, Muffat-Joly M, Augeron D. Functional and morphologic patterns of renal maturation in the developing guinea pig. Am J Physiol. 1981;36:H1467–75.Google Scholar
  58. 58.
    Arant Jr BS. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978;92:705–12.PubMedGoogle Scholar
  59. 59.
    Barfuss DW, Schafer JA. Differences in active and passive glucose transport along the proximal nephron. Am J Physiol. 1981;241:F322–32.PubMedGoogle Scholar
  60. 60.
    Turner RJ, Moran A. Heterogeneity of sodium-dependent d-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Physiol. 1982;242:F406–14.PubMedGoogle Scholar
  61. 61.
    Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA. Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Physiol. 1992;263:F459–65.PubMedGoogle Scholar
  62. 62.
    Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature. 1987;330:379–81.PubMedGoogle Scholar
  63. 63.
    Ikeda TS, Hwang ES, Coady MJ, Hirayama BA, Hediger MA, Wright EM. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. J Membr Biol. 1989;110:87–95.PubMedGoogle Scholar
  64. 64.
    Elsas LJ. Glucose reabsorption in familial renal glycosuria and glucose-galactose malabsorption. Birth Defects Orig Artic Ser. 1970;6:21–2.PubMedGoogle Scholar
  65. 65.
    Elsas LJ, Hillman RE, Patterson JH, Rosenberg LE. Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J Clin Invest. 1970;49:576–85.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Meeuwisse GW, Melin K. Glucose-galactose malabsorption. A clinical study of 6 cases. Acta Paediatr Scand. 1969;58 Suppl 188:3–18.Google Scholar
  67. 67.
    Melin K, Meeuwisse GW. Glucose-galactose malabsorption. A genetic study. Acta Paediatr Scand. 1969;188:19–24.Google Scholar
  68. 68.
    Calado J, Soto K, Clemente C, Correia P, Rueff J. Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum Genet. 2004;114:314–16.PubMedGoogle Scholar
  69. 69.
    Magen D, Sprecher E, Zelikovic I, Skorecki K. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int. 2005;67:34–41.PubMedGoogle Scholar
  70. 70.
    Arant Jr BS, Edelmann Jr CM, Nash MA. The renal reabsorption of glucose in the developing canine kidney: a study of glomerulotubular balance. Pediatr Res. 1974;8:638–46.PubMedGoogle Scholar
  71. 71.
    Beck JC. Glucose and sodium transport in brush-border membrane vesicles from fetal rabbit kidney. Ann N Y Acad Sci. 1985;456:457–9.PubMedGoogle Scholar
  72. 72.
    Foreman JW, Medow MS, Wald H, Ginkinger K, Segal S. Developmental aspects of sugar transport by isolated dog renal cortical tubules. Pediatr Res. 1984;18:719–23.PubMedGoogle Scholar
  73. 73.
    Schwartz GH, Evan AP. Development of solute transport in rabbit proximal tubule. I. HCO3 and glucose absorption. Am J Physiol. 1983;245:F382–90.PubMedGoogle Scholar
  74. 74.
    Haworth JC, MacDonald MS. Reducing sugars in the urine and blood of premature babies. Arch Dis Child. 2004;32:417–21.Google Scholar
  75. 75.
    Tuvad F, Vesterdal J. The maximal tubular transfer of glucose and para-aminohippurate in premature infants. Acta Paediatr Scand. 1953;42:337–45.Google Scholar
  76. 76.
    Beck JC, Lipkowitz MS, Abramson RG. Characterization of the fetal glucose transporter in rabbit kidney: comparison with the adult brush border electrogenic Na+-glucose symporter. J Clin Invest. 1988;82:379–87.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S, Matsuura N, Helip-Wooley A, Bockenhauer D, Warth R, Bernardini I, Visser G, Eggermann T, Lee P, Chairoungdua A, Jutabha P, Babu E, Nilwarangkoon S, Anzai N, Kanai Y, Verrey F, Gahl WA, Koizumi A. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet. 2004;36:999–1002.PubMedGoogle Scholar
  78. 78.
    Romeo E, Dave MH, Bacic D, Ristic Z, Camargo SM, Loffing J, Wagner CA, Verrey F. Luminal kidney and intestine SLC6 amino acid transporters of B0AT-cluster and their tissue distribution in Mus musculus. Am J Physiol Renal Physiol. 2006;290:F376–83.PubMedGoogle Scholar
  79. 79.
    Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JE. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet. 2004;36:1003–7.PubMedGoogle Scholar
  80. 80.
    Bohmer C, Broer A, Munzinger M, Kowalczuk S, Rasko JE, Lang F, Broer S. Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem J. 2005;389:745–51.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Broer A, Cavanaugh JA, Rasko JE, Broer S. The molecular basis of neutral aminoacidurias. Pflugers Arch. 2006;451:511–17.PubMedGoogle Scholar
  82. 82.
    Jonas AJ, Butler IJ. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest. 1989;84:200–4.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Ristic Z, Camargo SM, Romeo E, Bodoy S, Bertran J, Palacin M, Makrides V, Furrer EM, Verrey F. Neutral amino acid transport mediated by ortholog of imino acid transporter SIT1/SLC6A20 in opossum kidney cells. Am J Physiol Renal Physiol. 2006;290:F880–7.PubMedGoogle Scholar
  84. 84.
    Kanai Y, Nussberger S, Romero MF, Boron WF, Hebert SC, Hediger MA. Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter. J Biol Chem. 1995;270:16561–8.PubMedGoogle Scholar
  85. 85.
    Samarzija I, Fromter E. Electrophysiological analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pflugers Arch. 1982;393:210–14.PubMedGoogle Scholar
  86. 86.
    Weiss SD, McNamara PD, Pepe LM, Segal S. Glutamine and glutamic acid uptake by rat renal brushborder membrane vesicles. J Membr Biol. 1978;43:91–105.PubMedGoogle Scholar
  87. 87.
    Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992;360:467–71.PubMedGoogle Scholar
  88. 88.
    Shayakul C, Kanai Y, Lee WS, Brown D, Rothstein JD, Hediger MA. Localization of the high-affinity glutamate transporter EAAC1 in rat kidney. Am J Physiol. 1997;273:F1023–9.PubMedGoogle Scholar
  89. 89.
    Peghini P, Janzen J, Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J. 1997;16:3822–32.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE. Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest. 2011;121:446–53.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Sacktor B, Rosenbloom IL, Liang CT, Cheng L. Sodium gradient- and sodium plus potassium gradient-dependent l-glutamate uptake in renal basolateral membrane vesicles. J Membr Biol. 1981;60:63–71.PubMedGoogle Scholar
  92. 92.
    Matsuo H, Kanai Y, Kim JY, Chairoungdua A, Kim DK, Inatomi J, Shigeta Y, Ishimine H, Chaekuntode S, Tachampa K, Choi HW, Babu E, Fukuda J, Endou H. Identification of a novel Na+ − independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem. 2002;277:21017–26.PubMedGoogle Scholar
  93. 93.
    Segal S, McNamara PD, Pepe LM. Transport interaction of cystine and dibasic amino acids in renal brush border vesicles. Science. 1977;197:169–71.PubMedGoogle Scholar
  94. 94.
    Bertran J, Werner A, Moore ML, Stange G, Markovich D, Biber J, Testar X, Zorzano A, Palacin M, Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992;89:5601–5.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, Chillaron J. rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol. 2002;283:F540–8.PubMedGoogle Scholar
  96. 96.
    Furriols M, Chillaron J, Mora C, Castello A, Bertran J, Camps M, Testar X, Vilaro S, Zorzano A, Palacin M. rBAT, related to L-cystine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney development. J Biol Chem. 1993;268:27060–8.PubMedGoogle Scholar
  97. 97.
    Calonge MJ, Gasparini P, Chillaron J, Chillon M, Gallucci M, Rousaud F, Zelante L, Testar X, Dallapiccola B, Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994;6:420–5.PubMedGoogle Scholar
  98. 98.
    Calonge MJ, Volpini V, Bisceglia L, Rousaud F, Sanctis L, Beccia E, Zelante L, Testar X, Zorzano A, Estivill X, Gasparini P, Nunes V, Palacin M. Genetic heterogeneity in cystinuria: the SLC3A1 gene is linked to type I but not to type III cystinuria. Proc Natl Acad Sci U S A. 1995;92:9667–71.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Pras E, Raben N, Golomb E, Arber N, Aksentijevich I, Schapiro JM, Harel D, Katz G, Liberman U, Pras M, Kastner DL. Mutations in the SLC3A1 transporter gene in cystinuria. Am J Hum Genet. 1995;56:1297–303.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Pras E, Sood R, Raben N, Aksentijevich I, Chen X, Kastner DL. Genomic organization of SLC3A1, a transporter gene mutated in cystinuria. Genomics. 1996;36:163–7.PubMedGoogle Scholar
  101. 101.
    Feliubadalo L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George Jr AL, Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernandez E, Estevez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacin M. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999;23:52–7.PubMedGoogle Scholar
  102. 102.
    Font MA, Feliubadalo L, Estivill X, Nunes V, Golomb E, Kreiss Y, Pras E, Bisceglia L, Bisceglia L, D’Adamo AP, Zelante L, Gasparini P, Bassi MT, George Jr AL, Manzoni M, Riboni M, Ballabio A, Borsani G, Reig N, Fernandez E, Zorzano A, Bertran J, Palacin M. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum Mol Genet. 2001;10:305–16.PubMedGoogle Scholar
  103. 103.
    Mizoguchi K, Cha SH, Chairoungdua A, Kim DK, Shigeta Y, Matsuo H, Fukushima J, Awa Y, Akakura K, Goya T, Ito H, Endou H, Kanai Y. Human cystinuria-related transporter: localization and functional characterization. Kidney Int. 2001;59:1821–33.PubMedGoogle Scholar
  104. 104.
    Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kuhn LC, Verrey F. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell. 1999;10:4135–47.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Brodehl J, Gellissen K. Endogenous renal transport of free amino acids in infancy and childhood. Pediatrics. 1968;42:395–404.PubMedGoogle Scholar
  106. 106.
    Dustin JP, Moore S, Bigwood EJ. Chromatographic studies on the excretion of amino acids in early infancy. Metabolism. 1955;4:75–9.PubMedGoogle Scholar
  107. 107.
    Scriver CR, Davies E. Endogenous renal clearance rates of free amino acids in pre-pubertal children. (Employing an accelerated procedure for elution chromatography of basic amino acids on ion exchange resin). Pediatrics. 1965;36:592–8.PubMedGoogle Scholar
  108. 108.
    Reynolds R, Roth KS, Hwang SM, Segal S. On the development of glycine transport systems by rat renal cortex. Biochim Biophys Acta. 1978;511:274–84.PubMedGoogle Scholar
  109. 109.
    Roth KS, Hwang SM, London JW, Segal S. Ontogeny of glycine transport in isolated rat renal tubules. Am J Physiol. 1977;233:F241–6.PubMedGoogle Scholar
  110. 110.
    Baerlocher KE, Scriver CR, Mohyuddin F. The ontogeny of amino acid transport in rat kidney. I. Effect on distribution ratios and intracellular metabolism of proline and glycine. Biochim Biophys Acta. 1971;249:353–63.PubMedGoogle Scholar
  111. 111.
    Medow MS, Foreman JW, Bovee KC, Segal S. Developmental changes of glycine transport in the dog. Biochim Biophys Acta. 1982;693:85–92.PubMedGoogle Scholar
  112. 112.
    Chesney RW, Gusowski N, Lippincitt S, Zelikovic I. Renal adaptation to dietary amino acid alteration is expressed in immature renal brush border membranes. Pediatr Nephrol. 1988;2:146–50.PubMedGoogle Scholar
  113. 113.
    Medow MS, Roth KS, Goldmann DR, Ginkinger K, Hsu BY, Segal S. Developmental aspects of proline transport in rat renal brush border membranes. Proc Natl Acad Sci U S A. 1986;83:7561–4.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Bahn A, Prawitt D, Buttler D, Reid G, Enklaar T, Wolff NA, Ebbinghaus C, Hillemann A, Schulten HJ, Gunawan B, Fuzesi L, Zabel B, Burckhardt G. Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem Biophys Res Commun. 2000;275:623–30.PubMedGoogle Scholar
  115. 115.
    Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G. Renal tubular drug transporters. Nephron Physiol. 2006;103:97–106.Google Scholar
  116. 116.
    Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006;290:F251–61.PubMedGoogle Scholar
  117. 117.
    Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004;84:987–1049.PubMedGoogle Scholar
  118. 118.
    Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol. 2004;287:F236–44.PubMedGoogle Scholar
  119. 119.
    van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002;13:595–603.PubMedGoogle Scholar
  120. 120.
    Calcagno PL, Rubin MI. Renal extraction of para-aminohippurate in infants and children. J Clin Invest. 1963;42:1632–9.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Rubin MI, Bruck E, Rapoport M. Maturation of renal function in childhood: clearance studies. J Clin Invest. 1949;28:1144–62.PubMedCentralGoogle Scholar
  122. 122.
    Fawer CL, Torrado A, Guignard JP. Maturation of renal function in full-term and premature neonates. Helv Paediatr Acta. 1979;34:11–21.PubMedGoogle Scholar
  123. 123.
    Nakajima N, Sekine T, Cha SH, Tojo A, Hosoyamada M, Kanai Y, Yan K, Awa S, Endou H. Developmental changes in multispecific organic anion transporter 1 expression in the rat kidney. Kidney Int. 2000;57:1608–16.PubMedGoogle Scholar
  124. 124.
    Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu AS, Nigam SK. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol. 2000;278:F635–43.PubMedGoogle Scholar
  125. 125.
    Hirsch GH, Hook JB. Maturation of renal organic acid transport: substrate stimulation by penicillin. Science. 1969;165:909–10.PubMedGoogle Scholar
  126. 126.
    Hirsch GH, Hook JB. Maturation of renal organic acid transport: substrate stimulation by penicillin and p-aminohippurate (PAH). J Pharmacol Exp Ther. 1970;171:103–8.PubMedGoogle Scholar
  127. 127.
    Hirsch GH, Hook JB. Stimulation of renal organic acid transport and protein synthesis by penicillin. J Pharmacol Exp Ther. 1970;174:152–8.PubMedGoogle Scholar
  128. 128.
    Schwartz GJ, Goldsmith DI, Fine LG. p-aminohippurate transport in the proximal straight tubule: development and substrate stimulation. Pediatr Res. 1978;12:793–6.PubMedGoogle Scholar
  129. 129.
    Biber J, Caderas G, Stange G, Werner A, Murer H. Effect of low-phosphate diet on sodium/phosphate cotransport mRNA and protein content and on oocyte expression of phosphate transport. Pediatr Nephrol. 1993;7:823–6.PubMedGoogle Scholar
  130. 130.
    Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991;88:9608–12.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993;90:5979–83.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277:19665–72.PubMedGoogle Scholar
  133. 133.
    Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70:1548–59.PubMedGoogle Scholar
  134. 134.
    Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M. Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol. 1995;268:F784–91.PubMedGoogle Scholar
  135. 135.
    Levi M, Arar M, Kaissling B, Murer H, Biber J. Low-Pi diet increases the abundance of an apical protein in rat proximal-tubular S3 segments. Pflugers Arch. 1994;426:5–11.PubMedGoogle Scholar
  136. 136.
    Levi M, Lotscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J. Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Physiol. 1994;267:F900–8.PubMedGoogle Scholar
  137. 137.
    Takahashi F, Morita K, Katai K, Segawa H, Fujioka A, Kouda T, Tatsumi S, Nii T, Taketani Y, Haga H, Hisano S, Fukui Y, Miyamoto KI, Takeda E. Effects of dietary Pi on the renal Na+ − dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats. Biochem J. 1998;333(Pt 1):175–81.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A. 1998;95:14564–9.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Connelly JP, Crawford JD, Watson J. Studies of neonatal hyperphosphatemia. Pediatrics. 1962;30:425–32.PubMedGoogle Scholar
  140. 140.
    Hohenauer L, Rosenberg TF, Oh W. Calcium and phosphorus homeostasis on the first day of life. Biol Neonate. 1970;15:49–56.PubMedGoogle Scholar
  141. 141.
    Dean RFA, McCance RA. Phosphate clearance in infants and adults. J Physiol. 1948;107:182–6.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Richmond JB, Kravitz H, Segar W, Kravitz H. Renal clearance of endogenous phosphate in infants and children. Proc Soc Exp Biol Med. 1951;77:83–7.PubMedGoogle Scholar
  143. 143.
    Caverzasio J, Bonjour JP, Fleisch H. Tubular handling of Pi in young growing and adult rats. Am J Physiol. 1982;242:F705–10.PubMedGoogle Scholar
  144. 144.
    Johnson V, Spitzer A. Renal reabsorption of phosphate during development: whole-kidney events. Am J Physiol. 1986;251:F251–6.PubMedGoogle Scholar
  145. 145.
    Haramati A, Mulroney SE, Webster SK. Developmental changes in the tubular capacity for phosphate reabsorption in the rat. Am J Physiol. 1988;255:F287–91.PubMedGoogle Scholar
  146. 146.
    Webster SK, Haramati A. Developmental changes in the phosphaturic response to parathyroid hormone in the rat. Am J Physiol. 1985;249:F251–5.PubMedGoogle Scholar
  147. 147.
    Kaskel FJ, Kumar AM, Feld LG, Spitzer A. Renal reabsorption of phosphate during development: tubular events. Pediatr Nephrol. 1988;2:129–34.PubMedGoogle Scholar
  148. 148.
    Woda C, Mulroney SE, Halaihel N, Sun L, Wilson PV, Levi M, Haramati A. Renal tubular sites of increased phosphate transport and NaPi-2 expression in the juvenile rat. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1524–33.PubMedGoogle Scholar
  149. 149.
    Neiberger RE, Barac-Nieto M, Spitzer A. Renal reabsorption of phosphate during development: transport kinetics in BBMV. Am J Physiol. 1989;257:F268–74.PubMedGoogle Scholar
  150. 150.
    Mulroney SE, Haramati A. Renal adaptation to changes in dietary phosphate during development. Am J Physiol. 1990;258:F1650–6.PubMedGoogle Scholar
  151. 151.
    Barac-Nieto M, Corey H, Liu SM, Spitzer A. Role of intracellular phosphate in the regulation of renal phosphate transport during development. Pediatr Nephrol. 1993;7:819–22.PubMedGoogle Scholar
  152. 152.
    Traebert M, Lotscher M, Aschwanden R, Ritthaler T, Biber J, Murer H, Kaissling B. Distribution of the sodium/phosphate transporter during postnatal ontogeny of the rat kidney. J Am Soc Nephrol. 1999;10:1407–15.PubMedGoogle Scholar
  153. 153.
    Taufiq S, Collins JF, Ghishan FK. Posttranscriptional mechanisms regulate ontogenic changes in rat renal sodium-phosphate transporter. Am J Physiol. 1997;272:R134–41.PubMedGoogle Scholar
  154. 154.
    Spitzer A, Barac-Nieto M. Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol. 2001;16:763–71.PubMedGoogle Scholar
  155. 155.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Quigley R, Baum M. Effects of growth hormone and insulin-like growth factor I on rabbit proximal convoluted tubule transport. J Clin Invest. 1991;88:368–74.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Hammerman MR, Karl IE, Hruska KA. Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone. Biochim Biophys Acta. 1980;603:322–35.PubMedGoogle Scholar
  158. 158.
    Haramati A, Mulroney SE, Lumpkin MD. Regulation of renal phosphate reabsorption during development: implications from a new model of growth hormone deficiency. Pediatr Nephrol. 1990;4:387–91.PubMedGoogle Scholar
  159. 159.
    Mulroney SE, Lumpkin MD, Haramati A. Antagonist to GH-releasing factor inhibits growth and renal Pi reabsorption in immature rats. Am J Physiol. 1989;257:F29–34.PubMedGoogle Scholar
  160. 160.
    Woda CB, Halaihel N, Wilson PV, Haramati A, Levi M, Mulroney SE. Regulation of renal NaPi-2 expression and tubular phosphate reabsorption by growth hormone in the juvenile rat. Am J Physiol Renal Physiol. 2004;287:F117–23.PubMedGoogle Scholar
  161. 161.
    DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest. 1976;58:83–90.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Baum M, Schiavi S, Dwarakanath V, Quigley R. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int. 2005;68:1148–53.PubMedGoogle Scholar
  163. 163.
    Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001;284:977–81.PubMedGoogle Scholar
  164. 164.
    Shimada T, Muto T, Hasegawa H, Yamazaki Y, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. FGF-23 is a novel regulator of mineral homeostasis with unique properties controlling, vitamin D metabolism and phosphate reabsorption. J Bone Miner Res. 2002;17:S425.Google Scholar
  165. 165.
    Berndt T, Craig TA, Bowe AE, Vassiliadis J, Reczek D, Finnegan R, de Beur SMJ, Schiavi SC, Kumar R. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest. 2003;112:785–94.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281:6120–3.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Prie D, Beck L, Urena P, Friedlander G. Recent findings in phosphate homeostasis. Curr Opin Nephrol Hypertens. 2005;14:318–24.PubMedGoogle Scholar
  168. 168.
    Baum M. Developmental changes in rabbit juxtamedullary proximal convoluted tubule acidification. Pediatr Res. 1992;31:411–14.PubMedGoogle Scholar
  169. 169.
    Preisig PA, Ives HE, Cragoe Jr EJ, Alpern RJ, Rector Jr FC. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest. 1987;80:970–8.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Edelmann CMJ, Soriano JR, Boichis H, Gruskin AB, Acosta M. Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J Clin Invest. 1967;46:1309–17.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Schwartz GJ, Haycock GB, Edelmann Jr CM, Spitzer A. Late metabolic acidosis: a reassessment of the definition. J Pediatr. 1979;95:102–7.PubMedGoogle Scholar
  172. 172.
    Baum M, Quigley R. Prenatal glucocorticoids stimulate neonatal juxtamedullary proximal convoluted tubule acidification. Am J Physiol. 1991;261:F746–52.PubMedGoogle Scholar
  173. 173.
    Baum M. Neonatal rabbit juxtamedullary proximal convoluted tubule acidification. J Clin Invest. 1990;85:499–506.PubMedCentralPubMedGoogle Scholar
  174. 174.
    Shah M, Gupta N, Dwarakanath V, Moe OW, Baum M. Ontogeny of Na+/H+ antiporter activity in rat proximal convoluted tubules. Pediatr Res. 2000;48:206–10.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Beck JC, Lipkowitz MS, Abramson RG. Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles. J Clin Invest. 1991;87:2067–76.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Becker AM, Zhang J, Goyal S, Dwarakanath V, Aronson PS, Moe OW, Baum M. Ontogeny of NHE8 in the rat proximal tubule. Am J Physiol Renal Physiol. 2007;293:F255–61.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, Aronson PS. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol. 1993;265:F736–42.PubMedGoogle Scholar
  178. 178.
    Wu MS, Biemesderfer D, Giebisch G, Aronson PS. Role of NHE3 in mediating renal brush border Na+ − H+ exchange. Adaptation to metabolic acidosis. J Biol Chem. 1996;271:32749–52.PubMedGoogle Scholar
  179. 179.
    Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M. Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest. 2000;105:1141–6.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Goyal S, Vanden Heuvel G, Aronson PS. Renal expression of novel Na+/H+ exchanger isoform NHE8. Am J Physiol Renal Physiol. 2003;284:F467–73.PubMedGoogle Scholar
  181. 181.
    Goyal S, Mentone S, Aronson PS. Immunolocalization of NHE8 in rat kidney. Am J Physiol Renal Physiol. 2005;288:F530–8.PubMedGoogle Scholar
  182. 182.
    Zhang J, Bobulescu IA, Goyal S, Aronson PS, Baum MG, Moe OW. Characterization of Na+/H+ exchanger NHE8 in cultured renal epithelial cells. Am J Physiol Renal Physiol. 2007;293:F761–6.PubMedCentralPubMedGoogle Scholar
  183. 183.
    Baum M, Quigley R. Maturation of proximal tubular acidification. Pediatr Nephrol. 1993;7:785–91.PubMedGoogle Scholar
  184. 184.
    Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol. 2002;15 Suppl 5:S61–74.PubMedGoogle Scholar
  185. 185.
    Winkler CA, Kittelberger AM, Watkins RH, Maniscalco WM, Schwartz GJ. Maturation of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol Renal Physiol. 2001;280:F895–903.PubMedGoogle Scholar
  186. 186.
    Karashima S, Hattori S, Ushijima T, Furuse A, Nakazato H, Matsuda I. Developmental changes in carbonic anhydrase II in the rat kidney. Pediatr Nephrol. 1998;12:263–8.PubMedGoogle Scholar
  187. 187.
    Schwartz GJ, Olson J, Kittelberger AM, Matsumoto T, Waheed A, Sly WS. Postnatal development of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol. 1999;276:F510–20.PubMedGoogle Scholar
  188. 188.
    Baum M, Moe OW, Gentry DL, Alpern RJ. Effect of glucocorticoids on renal cortical NHE-3 and NHE-1 mRNA. Am J Physiol. 1994;267:F437–42.PubMedGoogle Scholar
  189. 189.
    Baum M, Amemiya M, Dwarakanath V, Alpern RJ, Moe OW. Glucocorticoids regulate NHE-3 transcription in OKP cells. Am J Physiol. 1996;270:F164–9.PubMedGoogle Scholar
  190. 190.
    Cano A, Baum M, Moe OW. Thyroid hormone stimulates the renal Na/H exchanger NHE3 by transcriptional activation. Am J Physiol. 1999;276:C102–8.PubMedCentralPubMedGoogle Scholar
  191. 191.
    Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol. 2005;289:F685–91.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Baum M, Biemesderfer D, Gentry D, Aronson PS. Ontogeny of rabbit renal cortical NHE3 and NHE1: effect of glucocorticoids. Am J Physiol. 1995;268:F815–20.PubMedGoogle Scholar
  193. 193.
    Shah M, Quigley R, Baum M. Maturation of proximal straight tubule NaCl transport: role of thyroid hormone. Am J Physiol Renal Physiol. 2000;278:F596–602.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Gupta N, Dwarakanath V, Baum M. Maturation of the Na/H antiporter (NHE3) in the proximal tubule of the hypothroid adrenalectomized rat. Am J Physiol Renal Physiol. 2004;287:F521–7.PubMedCentralPubMedGoogle Scholar
  195. 195.
    Baum M, Quigley R. Maturation of rat proximal tubule chloride permeability. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1659–64.PubMedCentralPubMedGoogle Scholar
  196. 196.
    Liu FY, Cogan MG. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol. 1984;247:F816–21.PubMedGoogle Scholar
  197. 197.
    Rector Jr FC. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol. 1983;244:F461–71.PubMedGoogle Scholar
  198. 198.
    Alpern RJ, Howlin KJ, Preisig PA. Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest. 1985;76:1360–6.PubMedCentralPubMedGoogle Scholar
  199. 199.
    Baum M, Berry CA. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit convoluted tubule. J Clin Invest. 1984;74:205–11.PubMedCentralPubMedGoogle Scholar
  200. 200.
    Aronson PS, Giebisch G. Mechanisms of chloride transport in the proximal tubule. Am J Physiol. 1997;273:F179–92.PubMedGoogle Scholar
  201. 201.
    Shah M, Quigley R, Baum M. Neonatal rabbit proximal tubule basolateral membrane Na+/H+ antiporter and Cl-/base exchange. Am J Physiol. 1999;276:R1792–7.PubMedCentralPubMedGoogle Scholar
  202. 202.
    Sheu JN, Quigley R, Baum M. Heterogeneity of chloride/base exchange in rabbit superficial and juxtamedullary proximal convoluted tubules. Am J Physiol. 1995;268:F847–53.PubMedGoogle Scholar
  203. 203.
    Aronson PS. 1994 Homer W. Smith Award. From flies to physiology–accidental findings along the trail of renal NaCl transport. J Am Soc Nephrol. 1995;5:2001–13.PubMedGoogle Scholar
  204. 204.
    Aronson PS. Role of ion exchangers in mediating NaCl transport in the proximal tubule. Kidney Int. 1996;49:1665–70.PubMedGoogle Scholar
  205. 205.
    Aronson PS. Ion exchangers mediating NaCl transport in the renal proximal tubule. Cell Biochem Biophys. 2002;36:147–53.PubMedGoogle Scholar
  206. 206.
    Aronson PS, Kuo SM. Heterogeneity of anion exchangers mediating chloride transport in the proximal tubule. Ann N Y Acad Sci. 1989;574:96–101.PubMedGoogle Scholar
  207. 207.
    Kurtz I, Nagami G, Yanagawa N, Li L, Emmons C, Lee I. Mechanism of apical and basolateral Na(+)-independent Cl/base exchange in the rabbit superficial proximal straight tubule. J Clin Invest. 1994;94:173–83.PubMedCentralPubMedGoogle Scholar
  208. 208.
    Shah M, Quigley R, Baum M. Maturation of rabbit proximal straight tubule chloride/base exchange. Am J Physiol. 1998;274:F883–8.PubMedCentralPubMedGoogle Scholar
  209. 209.
    Horster M. Expression of ontogeny in individual nephron segments. Kidney Int. 1982;22:550–9.PubMedGoogle Scholar
  210. 210.
    Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol. 2006;291:F1132–41.PubMedCentralPubMedGoogle Scholar
  211. 211.
    Sheu JN, Baum M, Bajaj G, Quigley R. Maturation of rabbit proximal convoluted tubule chloride permeability. Pediatr Res. 1996;39:308–12.PubMedGoogle Scholar
  212. 212.
    Baum M, Quigley R. Thyroid hormone modulates rabbit proximal straight tubule paracellular permeability. Am J Physiol Renal Physiol. 2004;286:F477–82.PubMedCentralPubMedGoogle Scholar
  213. 213.
    Preisig PA, Berry CA. Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol. 1985;249:F124–31.PubMedGoogle Scholar
  214. 214.
    Quigley R, Baum M. Water transport in neonatal and adult rabbit proximal tubules. Am J Physiol Renal Physiol. 2002;283:F280–5.PubMedCentralPubMedGoogle Scholar
  215. 215.
    Nielsen S, Agre P. The aquaporin family of water channels in kidney. Kidney Int. 1995;48:1057–68.PubMedGoogle Scholar
  216. 216.
    Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993;120:371–83.PubMedGoogle Scholar
  217. 217.
    Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.PubMedGoogle Scholar
  218. 218.
    Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991;88:11110–14.PubMedCentralPubMedGoogle Scholar
  219. 219.
    Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A. 1998;95:9660–4.PubMedCentralPubMedGoogle Scholar
  220. 220.
    Bondy C, Chin E, Smith BL, Preston GM, Agre P. Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci U S A. 1993;90:4500–4.PubMedCentralPubMedGoogle Scholar
  221. 221.
    Smith B, Baumgarten R, Nielsen S, Raben D, Zeidel ML, Agre P. Concurrent expression of erythroid and renal aquaporin CHIP and appearance of water channel activity in perinatal rats. J Clin Invest. 1993;92:2035–41.PubMedCentralPubMedGoogle Scholar
  222. 222.
    Quigley R, Baum M. Developmental changes in rabbit juxtamedullary proximal convoluted tubule water permeability. Am J Physiol. 1996;271:F871–6.PubMedGoogle Scholar
  223. 223.
    Mulder J, Baum M, Quigley R. Diffusional water permeability (PDW) of adult and neonatal rabbit renal brush border membrane vesicles. J Membr Biol. 2002;187:167–74.PubMedCentralPubMedGoogle Scholar
  224. 224.
    Quigley R, Harkins EW, Thomas PJ, Baum M. Maturational changes in rabbit renal brush border membrane vesicle osmotic water permeability. J Membr Biol. 1998;164:177–85.PubMedCentralPubMedGoogle Scholar
  225. 225.
    Quigley R, Gupta N, Lisec A, Baum M. Maturational changes in rabbit renal basolateral membrane vesicle osmotic water permeability. J Membr Biol. 2000;174:53–8.PubMedCentralPubMedGoogle Scholar
  226. 226.
    Mulder J, Haddad MN, Baum M, Quigley R. Glucocorticoids increase osmotic water permeability (Pf) in neonatal proximal tubule brush border membrane. Am J Physiol Regul Integr Comp Physiol. 2005;188:R1417–21.Google Scholar
  227. 227.
    Mulder J, Haddad MN, Vernon K, Baum M, Quigley R. Hypothyroidism increases osmotic water permeability (Pf) in the developing renal brush border membrane. Pediatr Res. 2003;53:1001–7.PubMedGoogle Scholar
  228. 228.
    Hebert SC, Gamba G. Molecular cloning and characterization of the renal diuretic-sensitive electroneutral sodium-(potassium)-chloride cotransporters. Clin Investig. 1994;72:692–4.PubMedGoogle Scholar
  229. 229.
    Hebert SC, Gamba G, Kaplan M. The electroneutral Na(+)-(K+)-Cl- cotransport family. Kidney Int. 1996;49:1638–41.PubMedGoogle Scholar
  230. 230.
    Greger R, Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch. 1981;392:92–4.PubMedGoogle Scholar
  231. 231.
    Mennitt PA, Wade JB, Ecelbarger CA, Palmer LG, Frindt G. Localization of ROMK channels in the rat kidney. J Am Soc Nephrol. 1997;8:1823–30.PubMedGoogle Scholar
  232. 232.
    Xu JZ, Hall AE, Peterson LN, Bienkowski MJ, Eessalu TE, Hebert SC. Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am J Physiol. 1997;273:F739–48.PubMedGoogle Scholar
  233. 233.
    Adachi S, Uchida S, Ito H, Hata M, Hiroe M, Marumo F, Sasaki S. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J Biol Chem. 1994;269:17677–83.PubMedGoogle Scholar
  234. 234.
    Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A. 1994;91:6943–7.PubMedCentralPubMedGoogle Scholar
  235. 235.
    Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney. J Am Soc Nephrol. 2001;12:1327–34.PubMedGoogle Scholar
  236. 236.
    Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature. 2001;414:558–61.PubMedGoogle Scholar
  237. 237.
    Bourdeau JE, Burg MB. Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am J Physiol. 1979;236:F357–64.PubMedGoogle Scholar
  238. 238.
    Brunette MG, Vigneault N, Carriere S. Micropuncture study of magnesium transport along the nephron in the young rat. Am J Physiol. 1974;227:891–6.PubMedGoogle Scholar
  239. 239.
    Brunette MG, Vigneault N, Carriere S. Micropuncture study of renal magnesium transport in magnesium-loaded rats. Am J Physiol. 1975;229:1695–701.PubMedGoogle Scholar
  240. 240.
    Imai M. Calcium transport across the rabbit thick ascending limb of Henle’s loop perfused in vitro. Pflugers Arch. 1978;374:255–63.PubMedGoogle Scholar
  241. 241.
    Rocha AS, Magaldi JB, Kokko JP. Calcium and phosphate transport in isolated segments of rabbit Henle’s loop. J Clin Invest. 1977;59:975–83.PubMedCentralPubMedGoogle Scholar
  242. 242.
    Simon DB, Lu Y, Choate KA, Velazquez H, Al Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285:103–6.PubMedGoogle Scholar
  243. 243.
    Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.PubMedGoogle Scholar
  244. 244.
    Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem. 2002;277:37881–7.PubMedGoogle Scholar
  245. 245.
    Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14:152–6.PubMedGoogle Scholar
  246. 246.
    Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17:171–8.PubMedGoogle Scholar
  247. 247.
    Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29:310–14.PubMedGoogle Scholar
  248. 248.
    Zink H, Horster M. Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol. 1977;233:F519–24.PubMedGoogle Scholar
  249. 249.
    Horster M. Loop of Henle functional differentiation: in vitro perfusion of the isolated thick ascending segment. Pflugers Arch. 1978;378:15–24.PubMedGoogle Scholar
  250. 250.
    Lee HW, Kim WY, Song HK, Yang CW, Han KH, Kwon HM, Kim J. Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter-A in developing mouse kidney. Am J Physiol Renal Physiol. 2007;292:F269–77.PubMedGoogle Scholar
  251. 251.
    Stubbe J, Madsen K, Nielsen FT, Skott O, Jensen BL. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. Am J Physiol Renal Physiol. 2006;291:F812–22.PubMedGoogle Scholar
  252. 252.
    Rane S, Aperia A. Ontogeny of Na-K-ATPase activity in thick ascending limb and of concentrating capacity. Am J Physiol. 1985;249:F723–8.PubMedGoogle Scholar
  253. 253.
    Djouadi F, Wijkhuisen A, Bastin J. Coordinate development of oxidative enzymes and Na-K-ATPase in thick ascending limb: role of corticosteroids. Am J Physiol. 1992;263:F237–42.PubMedGoogle Scholar
  254. 254.
    Ellison DH, Velazquez H, Wright FS. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol. 1987;253:F546–54.PubMedGoogle Scholar
  255. 255.
    Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S. Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Physiol. 1995;269:F900–10.PubMedGoogle Scholar
  256. 256.
    Shimizu T, Yoshitomi K, Nakamura M, Imai M. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro. J Clin Invest. 1988;82:721–30.PubMedCentralPubMedGoogle Scholar
  257. 257.
    Velazquez H, Wright FS. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am J Physiol. 1986;250:F1013–23.PubMedGoogle Scholar
  258. 258.
    Simon DB, Lifton RP. The molecular basis of inherited hypokalemic alkalosis: Bartter’s and Gitelman’s syndromes. Am J Physiol. 1996;271:F961–6.PubMedGoogle Scholar
  259. 259.
    Simon DB, Lifton RP. Ion transporter mutations in Gitelman’s and Bartter’s syndromes. Curr Opin Nephrol Hypertens. 1998;7:43–7.PubMedGoogle Scholar
  260. 260.
    Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12:24–30.PubMedGoogle Scholar
  261. 261.
    Wang T, Agulian SK, Giebisch G, Aronson PS. Effects of formate and oxalate on chloride absorption in rat distal tubule. Am J Physiol. 1993;264:F730–6.PubMedGoogle Scholar
  262. 262.
    Chambrey R, Warnock DG, Podevin RA, Bruneval P, Mandet C, Belair MF, Bariety J, Paillard M. Immunolocalization of the Na+/H+ exchanger isoform NHE2 in rat kidney. Am J Physiol. 1998;275:F379–86.PubMedGoogle Scholar
  263. 263.
    Lourdel S, Paulais M, Marvao P, Nissant A, Teulon J. A chloride channel at the basolateral membrane of the distal-convoluted tubule: a candidate ClC-K channel. J Gen Physiol. 2003;121:287–300.PubMedCentralPubMedGoogle Scholar
  264. 264.
    Liapis H, Nag M, Kaji DM. K-Cl cotransporter expression in the human kidney. Am J Physiol. 1998;275:C1432–7.PubMedGoogle Scholar
  265. 265.
    Velazquez H, Silva T. Cloning and localization of KCC4 in rabbit kidney: expression in distal convoluted tubule. Am J Physiol Renal Physiol. 2003;285:F49–58.PubMedGoogle Scholar
  266. 266.
    Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J, Stow LR, Cain BD, Weiner ID, Wall SM, Wingo CS. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol. 2007;292:F456–66.PubMedGoogle Scholar
  267. 267.
    Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev. 2001;81:51–84.PubMedGoogle Scholar
  268. 268.
    Mensenkamp AR, Hoenderop JG, Bindels RJ. Recent advances in renal tubular calcium reabsorption. Curr Opin Nephrol Hypertens. 2006;15:524–9.PubMedGoogle Scholar
  269. 269.
    Aperia A, Elinder G. Distal tubular sodium reabsorption in the developing rat kidney. Am J Physiol. 1981;240:F487–91.PubMedGoogle Scholar
  270. 270.
    Goldsmith DI, Drukker A, Blaufox MD, Edelmann Jr CM, Spitzer A. Hemodynamic and excretory response of the neonatal canine kidney to acute volume expansion. Am J Physiol. 1979;237:F392–7.PubMedGoogle Scholar
  271. 271.
    Aperia A, Broberger O, Thodenius K, Zetterstrom R. Renal response to an oral sodium load in newborn full-term infants. Acta Paediatr Scand. 1972;61:670–6.PubMedGoogle Scholar
  272. 272.
    Dean RF, McCance RA. The renal response of infants and adults to the administration of hypertonic solutions of sodium chloride and urea. J Physiol. 2004;109:81–7.Google Scholar
  273. 273.
    Aperia A, Herin P, Lundin S, Melin P, Zetterstrom R. Regulation of renal water excretion in newborn full-term infants. Acta Paediatr Scand. 1984;73:717–21.PubMedGoogle Scholar
  274. 274.
    McCance RA, Naylor NJ, Widdowson EM. The response of infants to a large dose of water. Arch Dis Child. 1954;29:104–9.PubMedCentralPubMedGoogle Scholar
  275. 275.
    Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G. Renal handling of sodium in premature and full-term neonates: a study using clearance methods during water diuresis. Pediatr Res. 1983;17:1013–16.PubMedGoogle Scholar
  276. 276.
    Leake RD, Zakauddin S, Trygstad CW, Fu P, Oh W. The effects of large volume intravenous fluid infusion on neonatal renal function. J Pediatr. 1976;89:968–72.PubMedGoogle Scholar
  277. 277.
    Hansen JOL, Smith CA. Effects of withholding fluid in the immediate post-natal period. Pediatrics. 1953;12:99–113.PubMedGoogle Scholar
  278. 278.
    Polacek E, Vocel J, Neugebaurova L, Sebkova M, Vechetova E. The osmotic concentrating ability in healthy infants and children. Arch Dis Child. 1965;40:291–5.PubMedCentralPubMedGoogle Scholar
  279. 279.
    Winberg J. Determination of renal concentrating capacity in infants and children without renal disease. Acta Paediatr Scand. 1959;48:318–28.Google Scholar
  280. 280.
    Boss JM, Dlouha H, Kraus M, Krecek J. The structure of the kidney in relation to age and diet in white rats during the weaning period. J Physiol. 1963;168:196–204.PubMedCentralPubMedGoogle Scholar
  281. 281.
    Trimble ME. Renal response to solute loading in infant rats: relationship to anatomical development. Am J Physiol. 1970;219:1089–97.PubMedGoogle Scholar
  282. 282.
    Rane S, Aperia A, Eneroth P, Lundin S. Development of urinary concentrating capacity in weaning rats. Pediatr Res. 1985;19:472–5.PubMedGoogle Scholar
  283. 283.
    Stanier MW. Development of intra-renal solute gradients in foetal and post-natal life. Pflugers Arch. 1972;336:263–70.PubMedGoogle Scholar
  284. 284.
    Edelmann Jr CM, Barnett HL, Stark H. Effect of urea on concentration of urinary nonurea solute in premature infants. J Appl Physiol. 1966;21:1021–5.PubMedGoogle Scholar
  285. 285.
    Edelmann Jr CM, Barnett HL, Troupkou V. Renal concentrating mechanisms in newborn infants. Effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J Anat. 1960;39:1062–9.Google Scholar
  286. 286.
    Baum MA, Ruddy MK, Hosselet CA, Harris HW. The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res. 1998;43:783–90.PubMedGoogle Scholar
  287. 287.
    Bonilla-Felix M, Jiang W. Aquaporin-2 in the immature rat: expression, regulation, and trafficking. J Am Soc Nephrol. 1997;8:1502–9.PubMedGoogle Scholar
  288. 288.
    Knepper MA, Inoue T. Regulation of aquaporin-2 water channel trafficking by vasopressin. Curr Opin Cell Biol. 1997;9:560–4.PubMedGoogle Scholar
  289. 289.
    Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol. 1995;269:F775–85.PubMedGoogle Scholar
  290. 290.
    Ward DT, Hammond TG, Harris HW. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. Annu Rev Physiol. 1999;61:683–97.PubMedGoogle Scholar
  291. 291.
    Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A. 2000;97:4386–91.PubMedCentralPubMedGoogle Scholar
  292. 292.
    Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest. 1997;100:957–62.PubMedCentralPubMedGoogle Scholar
  293. 293.
    Sabolic I, Katsura T, Verbavatz JM, Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol. 1995;143:165–75.PubMedGoogle Scholar
  294. 294.
    Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Fujinaka H, Marumo F, Kihara I. Expression of AQP family in rat kidneys during development and maturation. Am J Physiol. 1997;272:F198–204.PubMedGoogle Scholar
  295. 295.
    Yasui M, Marples D, Belusa R, Eklof AC, Celsi G, Nielsen S, Aperia A. Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol. 1996;271:F461–8.PubMedGoogle Scholar
  296. 296.
    Kim YH, Earm JH, Ma T, Verkman AS, Knepper MA, Madsen KM, Kim J. Aquaporin-4 expression in adult and developing mouse and rat kidney. J Am Soc Nephrol. 2001;12:1795–804.PubMedGoogle Scholar
  297. 297.
    Leake RD, Weitzman RE, Weinberg JA, Fisher DA. Control of vasopressin secretion in the newborn lamb. Pediatr Res. 1979;13:257–60.PubMedGoogle Scholar
  298. 298.
    Siegel SR, Leake RD, Weitzman RE, Fisher DA. Effects of furosemide and acute salt loading on vasopressin and renin secretion in the fetal lamb. Pediatr Res. 1980;14:869–71.PubMedGoogle Scholar
  299. 299.
    Weitzman RE, Fisher DA, Robillard J, Erenberg A, Kennedy R, Smith F. Arginine vasopressin response to an osmotic stimulus in the fetal sheep. Pediatr Res. 1978;12:35–8.PubMedGoogle Scholar
  300. 300.
    DeVane GW, Naden RP, Porter JC, Rosenfeld CR. Mechanism of arginine vasopressin release in the sheep fetus. Pediatr Res. 1982;16:504–7.PubMedGoogle Scholar
  301. 301.
    Robillard JE, Weitzman RE, Fisher DA, Smith Jr FG. The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res. 1979;13:606–10.PubMedGoogle Scholar
  302. 302.
    Robillard JE, Weitzman RE. Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol. 1980;238:F407–14.PubMedGoogle Scholar
  303. 303.
    DeVane GW, Porter JC. An apparent stress-induced release or arginine vasopressin by human neonates. J Clin Endocrinol Metab. 1980;51:1412–16.PubMedGoogle Scholar
  304. 304.
    Hadeed AJ, Leake RD, Weitzman RE, Fisher DA. Possible mechanisms of high blood levels of vasopressin during the neonatal period. J Pediatr. 1979;94:805–8.PubMedGoogle Scholar
  305. 305.
    Polin RA, Husain MK, James LS, Frantz AG. High vasopressin concentrations in human umbilical cord blood–lack of correlation with stress. J Perinat Med. 1977;5:114–19.PubMedGoogle Scholar
  306. 306.
    Rees L, Forsling ML, Brook CG. Vasopressin concentrations in the neonatal period. Clin Endocrinol (Oxf). 1980;12:357–62.Google Scholar
  307. 307.
    Rajerison RM, Butlen D, Jard S. Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation. Mol Cell Endocrinol. 1976;4:271–85.PubMedGoogle Scholar
  308. 308.
    Ostrowski NL, Young III WS, Knepper MA, Lolait SJ. Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology. 1993;133:1849–59.PubMedGoogle Scholar
  309. 309.
    Gengler WR, Forte LR. Neonatal development of rat kidney adenyl cyclase and phosphodiesterase. Biochim Biophys Acta. 1972;279:367–72.PubMedGoogle Scholar
  310. 310.
    Joppich R, Kiemann U, Mayer G, Haberle D. Effect of antidiuretic hormone upon urinary concentrating ability and medullary c-AMP formation in neonatal piglets. Pediatr Res. 1979;13:884–8.PubMedGoogle Scholar
  311. 311.
    Schlondorff D, Weber H, Trizna W, Fine LG. Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits. Am J Physiol. 1978;234:F16–21.PubMedGoogle Scholar
  312. 312.
    Horster MF, Zink H. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int. 1982;22:360–5.PubMedGoogle Scholar
  313. 313.
    Quigley R, Chakravarty S, Baum M. Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity. Am J Physiol Renal Physiol. 2004;286:F317–22.PubMedCentralPubMedGoogle Scholar
  314. 314.
    Siga E, Horster MF. Regulation of osmotic water permeability during differentiation of inner medullary collecting duct. Am J Physiol. 1991;260:F710–16.PubMedGoogle Scholar
  315. 315.
    Bonilla-Felix M, Vehaskari VM, Hamm LL. Water transport in the immature rabbit collecting duct. Pediatr Nephrol. 1999;13:103–7.PubMedGoogle Scholar
  316. 316.
    Bonilla-Felix M. Development of water transport in the collecting duct. Am J Physiol Renal Physiol. 2004;287:F1093–101.PubMedGoogle Scholar
  317. 317.
    Bonilla-Felix M, John-Phillip C. Prostaglandins mediate the defect in AVP-stimulated cAMP generation in immature collecting duct. Am J Physiol. 1994;267:F44–8.PubMedGoogle Scholar
  318. 318.
    McKinney TD, Burg MB. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977;60:766–8.PubMedCentralPubMedGoogle Scholar
  319. 319.
    Mehrgut FM, Satlin LM, Schwartz GJ. Maturation of. Am J Physiol. 1990;259:F801–8.PubMedGoogle Scholar
  320. 320.
    Evan AP, Satlin LM, Gattone VH, Connors B, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. II. Morphological observations. Am J Physiol. 1991;261:F91–107.PubMedGoogle Scholar
  321. 321.
    Satlin LM, Matsumoto T, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol. 1992;262:F199–208.PubMedGoogle Scholar
  322. 322.
    Satlin LM, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct: intercalated cell function. Am J Physiol. 1987;253:F622–35.PubMedGoogle Scholar
  323. 323.
    Gurkan S, Estilo GK, Wei Y, Satlin LM. Potassium transport in the maturing kidney. Pediatr Nephrol. 2007;22:915–25.PubMedGoogle Scholar
  324. 324.
    Constantinescu A, Silver RB, Satlin LM. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol. 1997;272:F167–77.PubMedGoogle Scholar
  325. 325.
    Aperia A, Broberger O, Herin P, Zetterstrom R. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand. 1979;68:813–17.PubMedGoogle Scholar
  326. 326.
    Beitins IZ, Bayard F, Levitsky L, Ances IG, Kowarski A, Migeon CJ. Plasma aldosterone concentration at delivery and during the newborn period. J Clin Invest. 1972;51:386–94.PubMedCentralPubMedGoogle Scholar
  327. 327.
    Fiselier TJ, Lijnen P, Monnens L, van Munster P, Jansen M, Peer P. Levels of renin, angiotensin I and II, angiotensin-converting enzyme and aldosterone in infancy and childhood. Eur J Pediatr. 1983;141:3–7.PubMedGoogle Scholar
  328. 328.
    Siegel SR, Fisher DA, Oh W. Serum aldosterone concentrations related to sodium balance in the newborn infant. Pediatrics. 1974;53:410–13.PubMedGoogle Scholar
  329. 329.
    Stephenson G, Hammet M, Hadaway G, Funder JW. Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol. 1984;247:F665–71.PubMedGoogle Scholar
  330. 330.
    Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Gyory E, Thurzo V. Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate. 1979;35:60–5.PubMedGoogle Scholar
  331. 331.
    Vehaskari VM. Ontogeny of cortical collecting duct sodium transport. Am J Physiol. 1994;267:F49–54.PubMedGoogle Scholar
  332. 332.
    Satlin LM. Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol. 1994;266:F57–65.PubMedGoogle Scholar
  333. 333.
    Satlin LM, Palmer LG. Apical Na+ conductance in maturing rabbit principal cell. Am J Physiol. 1996;270:F391–7.PubMedGoogle Scholar
  334. 334.
    Huber SM, Braun GS, Horster MF. Expression of the epithelial sodium channel (ENaC) during ontogenic differentiation of the renal cortical collecting duct epithelium. Pflugers Arch. 1999;437:491–7.PubMedGoogle Scholar
  335. 335.
    Vehaskari VM, Hempe JM, Manning J, Aviles DH, Carmichael MC. Developmental regulation of ENaC subunit mRNA levels in rat kidney. Am J Physiol. 1998;274:C1661–6.PubMedGoogle Scholar
  336. 336.
    Watanabe S, Matsushita K, McCray Jr PB, Stokes JB. Developmental expression of the epithelial Na+ channel in kidney and uroepithelia. Am J Physiol. 1999;276:F304–14.PubMedGoogle Scholar
  337. 337.
    Zolotnitskaya A, Satlin LM. Developmental expression of ROMK in rat kidney. Am J Physiol. 1999;276:F825–36.PubMedGoogle Scholar
  338. 338.
    Lorenz JM, Kleinman LI, Disney TA. Renal response of newborn dog to potassium loading. Am J Physiol. 1986;251:F513–19.PubMedGoogle Scholar
  339. 339.
    Lelievre-Pegorier M, Merlet-Benichou D, Roinel N, DeRouffignac C. Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol. 1983;245:F15–21.PubMedGoogle Scholar
  340. 340.
    Satlin LM, Palmer LG. Apical K+ conductance in maturing rabbit principal cell. Am J Physiol. 1997;272:F397–404.PubMedGoogle Scholar
  341. 341.
    Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol. 2001;280:F786–93.PubMedGoogle Scholar
  342. 342.
    Drukker A, Goldsmith DI, Spitzer A, Edelmann Jr CM, Blaufox MD. The renin angiotensin system in newborn dogs: developmental patterns and response to acute saline loading. Pediatr Res. 1980;14:304–7.PubMedGoogle Scholar
  343. 343.
    Godard C, Geering JM, Geering K, Vallotton MB. Plasma renin activity related to sodium balance, renal function and urinary vasopressin in the newborn infant. Pediatr Res. 1979;13:742–5.PubMedGoogle Scholar
  344. 344.
    Ekblad H, Kero P, Vuolteenaho O, Arjamaa O, Korvenranta H, Shaffer SG. Atrial natriuretic peptide in the preterm infant. Lack of correlation with natriuresis and diuresis. Acta Paediatr. 1992;81:978–82.PubMedGoogle Scholar
  345. 345.
    Brace RA, Miner LK, Siderowf AD, Cheung CY. Fetal and adult urine flow and ANF responses to vascular volume expansion. Am J Physiol. 1988;255:R846–50.PubMedGoogle Scholar
  346. 346.
    Robillard JE, Weiner C. Atrial natriuretic factor in the human fetus: effect of volume expansion. J Pediatr. 1988;113:552–5.PubMedGoogle Scholar
  347. 347.
    Ross MG, Ervin MG, Lam RW, Castro L, Leake RD, Fisher DA. Plasma atrial natriuretic peptide response to volume expansion in the ovine fetus. Am J Obstet Gynecol. 1987;157:1292–7.PubMedGoogle Scholar
  348. 348.
    Wei YF, Rodi CP, Day ML, Wiegand RC, Needleman LD, Cole BR, Needleman P. Developmental changes in the rat atriopeptin hormonal system. J Clin Invest. 1987;79:1325–9.PubMedCentralPubMedGoogle Scholar
  349. 349.
    Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol. 2000;62:621–47.PubMedGoogle Scholar
  350. 350.
    Kaneko S, Albrecht F, Asico LD, Eisner GM, Robillard JE, Jose PA. Ontogeny of DA1 receptor-mediated natriuresis in the rat: in vivo and in vitro correlations. Am J Physiol. 1992;263:R631–8.PubMedGoogle Scholar
  351. 351.
    Li XX, Albrecht FE, Robillard JE, Eisner GM, Jose PA. Gbeta regulation of Na/H exchanger-3 activity in rat renal proximal tubules during development. Am J Physiol Regul Integr Comp Physiol. 2000;278:R931–6.PubMedGoogle Scholar
  352. 352.
    Schlondorff D, Satriano JA, Schwartz GJ. Synthesis of prostaglandin E2 in different segments of isolated collecting tubules from adult and neonatal rabbits. Am J Physiol. 1985;248:F134–44.PubMedGoogle Scholar
  353. 353.
    Matson JR, Stokes JB, Robillard JE. Effects of inhibition of prostaglandin synthesis on fetal renal function. Kidney Int. 1981;20:621–7.PubMedGoogle Scholar
  354. 354.
    Osborn JL, Hook JB, Bailie MD. Effect of saralasin and indomethacin on renal function in developing piglets. Am J Physiol. 1980;238:R438–42.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departments of Pediatrics and Internal MedicineUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations