Nephrotoxins and Pediatric Kidney Injury

Living reference work entry

Abstract

The kidney and liver play central roles in the elimination of xenobiotic substances including drugs, environmental substances, food additives, and their metabolites. All xenobiotic substances are ultimately excreted into the urine via the kidney or into the feces via the liver and bile duct in their original form or as metabolites [1–3]. Considering this essential role of the kidney, it is reasonable expecting it to be susceptible to these xenobiotics. In addition, several specific functions of the kidney (e.g., tubular transport, metabolism of xenobiotics, and concentration of urine) and changes in hemodynamics in the kidney may cause nephrotoxicity.

Keywords

Glomerular Filtrate Rate Endoplasmic Reticulum Stress Acute Kidney Injury Tubular Cell Proximal Tubular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ullrich KJ. Renal transporters for organic anions and organic cations. Structural requirements for substrates. J Membr Biol. 1997;158(2):95–107.PubMedGoogle Scholar
  2. 2.
    Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993;73(4):765–96.PubMedGoogle Scholar
  3. 3.
    Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006;290(2):F251–61.PubMedGoogle Scholar
  4. 4.
    Vandecasteele SJ, De Vriese AS, Tacconelli E. The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: evidence and uncertainties. J Antimicrob Chemother. 2013;68(4):743–8.PubMedGoogle Scholar
  5. 5.
    Sekine T, Endou H. Solute transport and energy production in the kidney. San Diego: Academic; 2012.Google Scholar
  6. 6.
    Kusuhara H, Sekine T, Anzai N, Endou H. Drug transport in the kidney. 2nd ed. Wiley, 2014.Google Scholar
  7. 7.
    Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–51.PubMedGoogle Scholar
  8. 8.
    Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch. 2004;447(5):653–65.PubMedGoogle Scholar
  9. 9.
    Kerjaschki D, Farquhar MG. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med. 1983;157(2):667–86.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic receptors in the renal proximal tubule. Physiology (Bethesda). 2012 27(4):223–36.Google Scholar
  11. 11.
    Seetharam B, Christensen EI, Moestrup SK, Hammond TG, Verroust PJ. Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. J Clin Invest. 1997;99(10):2317–22.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic receptors in the renal proximal tubule. Physiology (Bethesda). 2012;27(4):223–36.Google Scholar
  13. 13.
    Schmitz C, Hilpert J, Jacobsen C, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem. 2002;277(1):618–22.PubMedGoogle Scholar
  14. 14.
    Hammond TG, Majewski RR, Kaysen JH, et al. Gentamicin inhibits rat renal cortical homotypic endosomal fusion: role of megalin. Am J Physiol. 1997;272(1 Pt 2):F117–23.PubMedGoogle Scholar
  15. 15.
    Klassen RB, Crenshaw K, Kozyraki R, et al. Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol. 2004;287(3):F393–403.PubMedGoogle Scholar
  16. 16.
    Gburek J, Birn H, Verroust PJ, et al. Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. Am J Physiol Renal Physiol. 2003;285(3):F451–8.PubMedGoogle Scholar
  17. 17.
    Gburek J, Verroust PJ, Willnow TE, et al. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J Am Soc Nephrol. 2002;13(2):423–30.PubMedGoogle Scholar
  18. 18.
    Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP. Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis. 2008;13(1):11–32.PubMedGoogle Scholar
  19. 19.
    Havasi A, Borkan SC. Apoptosis and acute kidney injury. Kidney Int. 2011;80(1):29–40.PubMedGoogle Scholar
  20. 20.
    Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002;11(3):301–8.PubMedGoogle Scholar
  21. 21.
    Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol. 2012;2012:465897.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71.PubMedGoogle Scholar
  23. 23.
    Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.PubMedGoogle Scholar
  24. 24.
    Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547–81.PubMedGoogle Scholar
  25. 25.
    Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science. 2003;299(5613):1751–3.PubMedGoogle Scholar
  26. 26.
    Lock EA, Reed CJ. Xenobiotic metabolizing enzymes of the kidney. Toxicol Pathol. 1998;26(1):18–25.PubMedGoogle Scholar
  27. 27.
    Hinson JA, Forkert PG. Phase II enzymes and bioactivation. Can J Physiol Pharmacol. 1995;73(10):1407–13.PubMedGoogle Scholar
  28. 28.
    Coughtrie MW. Sulphation catalysed by the human cytosolic sulphotransferases – chemical defence or molecular terrorism? Hum Exp Toxicol. 1996;15(7):547–55.PubMedGoogle Scholar
  29. 29.
    Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.PubMedGoogle Scholar
  30. 30.
    Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Physiol Renal Physiol. 2011;300(5):F1054–61.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Sommer T, Jarosch E. BiP binding keeps ATF6 at bay. Dev Cell. 2002;3(1):1–2.PubMedGoogle Scholar
  32. 32.
    Lhotak S, Sood S, Brimble E, et al. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am J Physiol Renal Physiol. 2012;303(2):F266–78.PubMedGoogle Scholar
  33. 33.
    Colgan SM, Hashimi AA, Austin RC. Endoplasmic reticulum stress and lipid dysregulation. Expert Rev Mol Med. 2011;13:e4.PubMedGoogle Scholar
  34. 34.
    Peyrou M, Cribb AE. Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicology In Vitro. 2007;21(5):878–86.PubMedGoogle Scholar
  35. 35.
    Kimura K, Jin H, Ogawa M, Aoe T. Dysfunction of the ER chaperone BiP accelerates the renal tubular injury. Biochem Biophys Res Commun. 2008;366(4):1048–53.PubMedGoogle Scholar
  36. 36.
    Ohse T, Inagi R, Tanaka T, et al. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int. 2006;70(8):1447–55.PubMedGoogle Scholar
  37. 37.
    Sadowski J, Badzynska B. Intrarenal vasodilator systems: NO, prostaglandins and bradykinin. An integrative approach. J Physiol Pharmacol. 2008;59 Suppl 9:105–19.PubMedGoogle Scholar
  38. 38.
    Patzer L. Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol. 2008;23(12):2159–73.PubMedGoogle Scholar
  39. 39.
    Jung KY, Takeda M, Shimoda M, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002;70(16):1861–74.PubMedGoogle Scholar
  40. 40.
    Takeda M, Tojo A, Sekine T, Hosoyamada M, Kanai Y, Endou H. Role of organic anion transporter 1 (OAT1) in cephaloridine (CER)-induced nephrotoxicity. Kidney Int. 1999;56(6):2128–36.PubMedGoogle Scholar
  41. 41.
    Jariyawat S, Sekine T, Takeda M, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7.PubMedGoogle Scholar
  42. 42.
    Tune BM. Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr Nephrol. 1997;11(6):768–72.PubMedGoogle Scholar
  43. 43.
    Mohkam M, Karimi A, Gharib A, et al. Ceftriaxone associated nephrolithiasis: a prospective study in 284 children. Pediatr Nephrol. 2007;22(5):690–4.PubMedGoogle Scholar
  44. 44.
    Cataldi L, Leone R, Moretti U, et al. Potential risk factors for the development of acute renal failure in preterm newborn infants: a case–control study. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F514–9.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez-Hernandez FJ. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol Sci. 2011;119(2):245–56.PubMedGoogle Scholar
  46. 46.
    Luft FC, Yum MN, Walker PD, Kleit SA. Gentamicin gradient patterns and morphological changes in human kidneys. Nephron. 1977;18(3):167–74.PubMedGoogle Scholar
  47. 47.
    Smith CR, Baughman KL, Edwards CQ, Rogers JF, Lietman PS. Controlled comparison of amikacin and gentamicin. N Engl J Med. 1977;296(7):349–53.PubMedGoogle Scholar
  48. 48.
    Paterson DL, Robson JM, Wagener MM. Risk factors for toxicity in elderly patients given aminoglycosides once daily. J Gen Intern Med. 1998;13(11):735–9.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Chesney RW, Jones DP. Nephrotoxins. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004.Google Scholar
  50. 50.
    Uijtendaal EV, Rademaker CM, Schobben AF, et al. Once-daily versus multiple-daily gentamicin in infants and children. Ther Drug Monit. 2001;23(5):506–13.PubMedGoogle Scholar
  51. 51.
    Smyth AR, Bhatt J. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2014;2:Cd002009.PubMedGoogle Scholar
  52. 52.
    Verpooten GA, Tulkens PM, Molitoris BA. Aminoglycosides and vancomycin. Dordrecht: Kluwer; 2003.Google Scholar
  53. 53.
    Cui S, Verroust PJ, Moestrup SK, Christensen EI. Megalin/gp330 mediates uptake of albumin in renal proximal tubule. Am J Physiol. 1996;271(4 Pt 2):F900–7.PubMedGoogle Scholar
  54. 54.
    Moestrup SK, Cui S, Vorum H, et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest. 1995;96(3):1404–13.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Nagai J, Saito M, Adachi Y, Yumoto R, Takano M. Inhibition of gentamicin binding to rat renal brush-border membrane by megalin ligands and basic peptides. J Control Release. 2006;112(1):43–50.PubMedGoogle Scholar
  56. 56.
    Frommer JP, Senekjian HO, Babino H, Weinman EJ. Intratubular microinjection study of gentamicin transport in the rat. Miner Electrolyte Metab. 1983;9(2):108–12.PubMedGoogle Scholar
  57. 57.
    Sandoval RM, Molitoris BA. Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am J Physiol Renal Physiol. 2004;286(4):F617–24.PubMedGoogle Scholar
  58. 58.
    Giurgea-Marion L, Toubeau G, Laurent G, Heuson-Stiennon JA, Tulkens PM. Impairment of lysosome-pinocytic vesicle fusion in rat kidney proximal tubules after treatment with gentamicin at low doses. Toxicol Appl Pharmacol. 1986;86(2):271–85.PubMedGoogle Scholar
  59. 59.
    Jones AT, Wessling-Resnick M. Inhibition of in vitro endosomal vesicle fusion activity by aminoglycoside antibiotics. J Biol Chem. 1998;273(39):25301–9.PubMedGoogle Scholar
  60. 60.
    Shorr AF. Epidemiology of staphylococcal resistance. Clin Infect Dis. 2007;45 Suppl 3:S171–6.PubMedGoogle Scholar
  61. 61.
    Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98.PubMedGoogle Scholar
  62. 62.
    Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67(1):17–24.PubMedGoogle Scholar
  63. 63.
    Vandecasteele SJ, De Vriese AS. Recent changes in vancomycin use in renal failure. Kidney Int. 2010;77(9):760–4.PubMedGoogle Scholar
  64. 64.
    Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–14.PubMedGoogle Scholar
  65. 65.
    Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925–42.PubMedGoogle Scholar
  66. 66.
    Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can’t get there from here. Clin Infect Dis. 2011;52(8):969–74.PubMedGoogle Scholar
  67. 67.
    Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother. 2009;53(10):4069–79.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: myths and facts. Neth J Med. 2011;69(9):379–83.PubMedGoogle Scholar
  69. 69.
    Nakamura T, Takano M, Yasuhara M, Inui K. In-vivo clearance study of vancomycin in rats. J Pharm Pharmacol. 1996;48(11):1197–200.PubMedGoogle Scholar
  70. 70.
    Dieterich C, Puey A, Lin S, et al. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci. 2009;107(1):258–69.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Fanos V, Cataldi L. Renal transport of antibiotics and nephrotoxicity: a review. J Chemother. 2001;13(5):461–72.PubMedGoogle Scholar
  72. 72.
    Hong S, Valderrama E, Mattana J, et al. Vancomycin-induced acute granulomatous interstitial nephritis: therapeutic options. Am J Med Sci. 2007;334(4):296–300.PubMedGoogle Scholar
  73. 73.
    Nishino Y, Takemura S, Minamiyama Y, et al. Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res. 2003;37(4):373–9.PubMedGoogle Scholar
  74. 74.
    Oktem F, Arslan MK, Ozguner F, et al. In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine. Toxicology. 2005;215(3):227–33.PubMedGoogle Scholar
  75. 75.
    Ahmida MH. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. Exp Toxicol Pathol. 2012;64(3):149–53.PubMedGoogle Scholar
  76. 76.
    Ocak S, Gorur S, Hakverdi S, Celik S, Erdogan S. Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol. 2007;100(5):328–33.PubMedGoogle Scholar
  77. 77.
    Cetin H, Olgar S, Oktem F, et al. Novel evidence suggesting an anti-oxidant property for erythropoietin on vancomycin-induced nephrotoxicity in a rat model. Clin Exp Pharmacol Physiol. 2007;34(11):1181–5.PubMedGoogle Scholar
  78. 78.
    Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005;45(5):804–17.PubMedGoogle Scholar
  79. 79.
    Bryson YJ. The use of acyclovir in children. Pediatr Infect Dis. 1984;3(4):345–8.PubMedGoogle Scholar
  80. 80.
    Bianchetti MG, Roduit C, Oetliker OH. Acyclovir-induced renal failure: course and risk factors. Pediatr Nephrol. 1991;5(2):238–9.PubMedGoogle Scholar
  81. 81.
    Becker BN, Fall P, Hall C, et al. Rapidly progressive acute renal failure due to acyclovir: case report and review of the literature. Am J Kidney Dis. 1993;22(4):611–5.PubMedGoogle Scholar
  82. 82.
    Gunness P, Aleksa K, Koren G. The effect of acyclovir on the tubular secretion of creatinine in vitro. J Transl Med. 2010;8:139.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Urakami Y, Kimura N, Okuda M, Inui K. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004;21(6):976–81.PubMedGoogle Scholar
  84. 84.
    Takeda M, Khamdang S, Narikawa S, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24.PubMedGoogle Scholar
  85. 85.
    Sawyer MH, Webb DE, Balow JE, Straus SE. Acyclovir-induced renal failure. Clinical course and histology. Am J Med. 1988;84(6):1067–71.PubMedGoogle Scholar
  86. 86.
    Dos Santos Mde F, Dos Santos OF, Boim MA, et al. Nephrotoxicity of acyclovir and ganciclovir in rats: evaluation of glomerular hemodynamics. J Am Soc Nephrol. 1997;8(3):361–7.Google Scholar
  87. 87.
    Wang Y, Smith KP. Safety of alternative antiviral agents for neonatal herpes simplex virus encephalitis and disseminated infection. J Pediatr Pharmacol Ther. 2014;19(2):72–82.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Reusser P, Einsele H, Lee J, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood. 2002;99(4):1159–64.PubMedGoogle Scholar
  89. 89.
    Ortiz A, Justo P, Sanz A, et al. Tubular cell apoptosis and cidofovir-induced acute renal failure. Antivir Ther. 2005;10(1):185–90.PubMedGoogle Scholar
  90. 90.
    Lalezari JP, Stagg RJ, Kuppermann BD, et al. Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS. A randomized, controlled trial. Ann Intern Med. 1997;126(4):257–63.PubMedGoogle Scholar
  91. 91.
    Gallant JE, Deresinski S. Tenofovir disoproxil fumarate. Clin Infect Dis. 2003;37(7):944–50.PubMedGoogle Scholar
  92. 92.
    Belongia EA, Costa J, Gareen IF, et al. NIH consensus development statement on management of hepatitis B. NIH Consens State Sci Statements. 2008;25(2):1–29.PubMedGoogle Scholar
  93. 93.
    Rodriguez-Novoa S, Alvarez E, Labarga P, Soriano V. Renal toxicity associated with tenofovir use. Expert Opin Drug Saf. 2010;9(4):545–59.PubMedGoogle Scholar
  94. 94.
    Fernandez-Fernandez B, Montoya-Ferrer A, Sanz AB, et al. Tenofovir nephrotoxicity: 2011 update. AIDS Res Treat. 2011;2011:354908.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Ray AS, Cihlar T, Robinson KL, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50(10):3297–304.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D’Agati VD, Markowitz GS. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int. 2010;78(11):1171–7.PubMedGoogle Scholar
  97. 97.
    Gayet-Ageron A, Ananworanich J, Jupimai T, et al. No change in calculated creatinine clearance after tenofovir initiation among Thai patients. J Antimicrob Chemother. 2007;59(5):1034–7.PubMedGoogle Scholar
  98. 98.
    Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004;292(2):191–201.PubMedGoogle Scholar
  99. 99.
    Cooper RD, Wiebe N, Smith N, Keiser P, Naicker S, Tonelli M. Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin Infect Dis. 2010;51(5):496–505.PubMedGoogle Scholar
  100. 100.
    Cundy KC, Barditch-Crovo P, Walker RE, et al. Clinical pharmacokinetics of adefovir in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother. 1995;39(11):2401–5.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Tanji N, Tanji K, Kambham N, Markowitz GS, Bell A, D’Agati VD. Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Hum Pathol. 2001;32(7):734–40.PubMedGoogle Scholar
  102. 102.
    Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999;56(3):570–80.PubMedGoogle Scholar
  103. 103.
    Cihlar T, Laflamme G, Fisher R, et al. Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob Agents Chemother. 2009;53(1):150–6.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Perazella MA. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci. 2003;325(6):349–62.PubMedGoogle Scholar
  105. 105.
    Cooper RD, Tonelli M. Renal disease associated with antiretroviral therapy in the treatment of HIV. Nephron Clin Pract. 2011;118(3):c262–8.PubMedGoogle Scholar
  106. 106.
    Kopp JB, Falloon J, Filie A, et al. Indinavir-associated interstitial nephritis and urothelial inflammation: clinical and cytologic findings. Clin Infect Dis. 2002;34(8):1122–8.PubMedGoogle Scholar
  107. 107.
    Sawaya BP, Briggs JP, Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995;6(2):154–64.PubMedGoogle Scholar
  108. 108.
    Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis. 1999;29(6):1402–7.PubMedGoogle Scholar
  109. 109.
    Costa S, Nucci M. Can we decrease amphotericin nephrotoxicity? Curr Opin Crit Care. 2001;7(6):379–83.PubMedGoogle Scholar
  110. 110.
    Deray G. Amphotericin B, nephrotoxicity. J Antimicrob Chemother. 2002;49 Suppl 1:37–41.PubMedGoogle Scholar
  111. 111.
    Goldman RD, Koren G. Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol. 2004;26(7):421–6.PubMedGoogle Scholar
  112. 112.
    Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician. 2008;78(6):743–50.PubMedGoogle Scholar
  113. 113.
    Peres LA, da Cunha Jr AD. Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol. 2013;35(4):332–40.PubMedGoogle Scholar
  114. 114.
    Safirstein R, Winston J, Moel D, Dikman S, Guttenplan J. Cisplatin nephrotoxicity: insights into mechanism. Int J Androl. 1987;10(1):325–46.PubMedGoogle Scholar
  115. 115.
    Womer RB, Pritchard J, Barratt TM. Renal toxicity of cisplatin in children. J Pediatr. 1985;106(4):659–63.PubMedGoogle Scholar
  116. 116.
    Erdlenbruch B, Nier M, Kern W, Hiddemann W, Pekrun A, Lakomek M. Pharmacokinetics of cisplatin and relation to nephrotoxicity in paediatric patients. Eur J Clin Pharmacol. 2001;57(5):393–402.PubMedGoogle Scholar
  117. 117.
    Skinner R, Pearson AD, English MW, et al. Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer. 1998;77(10):1677–82.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Brock PR, Koliouskas DE, Barratt TM, Yeomans E, Pritchard J. Partial reversibility of cisplatin nephrotoxicity in children. J Pediatr. 1991;118(4 Pt 1):531–4.PubMedGoogle Scholar
  119. 119.
    Ariceta G, Rodriguez-Soriano J, Vallo A, Navajas A. Acute and chronic effects of cisplatin therapy on renal magnesium homeostasis. Med Pediatr Oncol. 1997;28(1):35–40.PubMedGoogle Scholar
  120. 120.
    Loebstein R, Koren G. Ifosfamide-induced nephrotoxicity in children: critical review of predictive risk factors. Pediatrics. 1998;101(6):E8.PubMedGoogle Scholar
  121. 121.
    Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 2003;14(1):1–10.PubMedGoogle Scholar
  122. 122.
    Hartmann JT, Fels LM, Franzke A, et al. Comparative study of the acute nephrotoxicity from standard dose cisplatin +/− ifosfamide and high-dose chemotherapy with carboplatin and ifosfamide. Anticancer Res. 2000;20(5c):3767–73.PubMedGoogle Scholar
  123. 123.
    Al-Sarraf M, Fletcher W, Oishi N, et al. Cisplatin hydration with and without mannitol diuresis in refractory disseminated malignant melanoma: a southwest oncology group study. Cancer Treat Rep. 1982;66(1):31–5.PubMedGoogle Scholar
  124. 124.
    Stathopoulos GP, Boulikas T, Vougiouka M, et al. Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): phase I study. Oncol Rep. 2005;13(4):589–95.PubMedGoogle Scholar
  125. 125.
    Ciarimboli G, Deuster D, Knief A, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176(3):1169–80.PubMedCentralPubMedGoogle Scholar
  126. 126.
    dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012;86(8):1233–50.PubMedGoogle Scholar
  127. 127.
    Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem. 2007;7(1):3–18.PubMedGoogle Scholar
  128. 128.
    Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, Santos AC. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol. 2008;61(1):145–55.PubMedGoogle Scholar
  129. 129.
    Santos NA, Catao CS, Martins NM, Curti C, Bianchi ML, Santos AC. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol. 2007;81(7):495–504.PubMedGoogle Scholar
  130. 130.
    Cetin R, Devrim E, Kilicoglu B, Avci A, Candir O, Durak I. Cisplatin impairs antioxidant system and causes oxidation in rat kidney tissues: possible protective roles of natural antioxidant foods. J Appl Toxicol. 2006;26(1):42–6.PubMedGoogle Scholar
  131. 131.
    Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490–518.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.PubMedGoogle Scholar
  133. 133.
    Sancho-Martinez SM, Prieto-Garcia L, Prieto M, Lopez-Novoa JM, Lopez-Hernandez FJ. Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther. 2012;136(1):35–55.PubMedGoogle Scholar
  134. 134.
    Jones DP, Spunt SL, Green D, Springate JE. Renal late effects in patients treated for cancer in childhood: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(6):724–31.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Rossi R. Nephrotoxicity of ifosfamide – moving towards understanding the molecular mechanisms. Nephrol Dial Transplant. 1997;12(6):1091–2.PubMedGoogle Scholar
  136. 136.
    Skinner R, Pearson AD, Price L, Coulthard MG, Craft AW. Nephrotoxicity after ifosfamide. Arch Dis Child. 1990;65(7):732–8.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Ho PT, Zimmerman K, Wexler LH, et al. A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer. 1995;76(12):2557–64.PubMedGoogle Scholar
  138. 138.
    Loebstein R, Atanackovic G, Bishai R, et al. Risk factors for long-term outcome of ifosfamide-induced nephrotoxicity in children. J Clin Pharmacol. 1999;39(5):454–61.PubMedGoogle Scholar
  139. 139.
    Stohr W, Paulides M, Bielack S, et al. Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer. 2007;48(4):447–52.PubMedGoogle Scholar
  140. 140.
    Fels LM, Bokemeyer C, van Rhee J, Schmoll HJ, Stolte H. Evaluation of late nephrotoxicity in long-term survivors of Hodgkin’s disease. Oncology. 1996;53(1):73–8.PubMedGoogle Scholar
  141. 141.
    Marina NM, Poquette CA, Cain AM, Jones D, Pratt CB, Meyer WH. Comparative renal tubular toxicity of chemotherapy regimens including ifosfamide in patients with newly diagnosed sarcomas. J Pediatr Hematol Oncol. 2000;22(2):112–8.PubMedGoogle Scholar
  142. 142.
    Arndt C, Morgenstern B, Hawkins D, Wilson D, Liedtke R, Miser J. Renal function following combination chemotherapy with ifosfamide and cisplatin in patients with osteogenic sarcoma. Med Pediatr Oncol. 1999;32(2):93–6.PubMedGoogle Scholar
  143. 143.
    Skinner R. Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol. 2003;41(3):190–7.PubMedGoogle Scholar
  144. 144.
    Suarez A, McDowell H, Niaudet P, Comoy E, Flamant F. Long-term follow-up of ifosfamide renal toxicity in children treated for malignant mesenchymal tumors: an International Society of Pediatric Oncology report. J Clin Oncol. 1991;9(12):2177–82.PubMedGoogle Scholar
  145. 145.
    Nissim I, Weinberg JM. Glycine attenuates Fanconi syndrome induced by maleate or ifosfamide in rats. Kidney Int. 1996;49(3):684–95.PubMedGoogle Scholar
  146. 146.
    Schlenzig JS, Charpentier C, Rabier D, Kamoun P, Sewell AC, Harpey JP. l-carnitine: a way to decrease cellular toxicity of ifosfamide? Eur J Pediatr. 1995;154(8):686–7.PubMedGoogle Scholar
  147. 147.
    Chang TK, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993;53(23):5629–37.PubMedGoogle Scholar
  148. 148.
    Boal JH, Williamson M, Boyd VL, Ludeman SM, Egan W. 31P NMR studies of the kinetics of bisalkylation by isophosphoramide mustard: comparisons with phosphoramide mustard. J Med Chem. 1989;32(8):1768–73.PubMedGoogle Scholar
  149. 149.
    Lauterburg BH, Nguyen T, Hartmann B, Junker E, Kupfer A, Cerny T. Depletion of total cysteine, glutathione, and homocysteine in plasma by ifosfamide/mesna therapy. Cancer Chemother Pharmacol. 1994;35(2):132–6.PubMedGoogle Scholar
  150. 150.
    Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703.PubMedGoogle Scholar
  151. 151.
    Stylianou K, Lioudaki E, Papadimitraki E, et al. Crescentic glomerulonephritis associated with vascular endothelial growth factor (VEGF) inhibitor and bisphosphonate administration. Nephrol Dial Transplant. 2011;26(5):1742–5.PubMedGoogle Scholar
  152. 152.
    Wu S, Kim C, Baer L, Zhu X. Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol. 2010;21(8):1381–9.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.PubMedGoogle Scholar
  154. 154.
    Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Stokes MB, Erazo MC, D’Agati VD. Glomerular disease related to anti-VEGF therapy. Kidney Int. 2008;74(11):1487–91.PubMedGoogle Scholar
  156. 156.
    Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22(11):2184–91.PubMedGoogle Scholar
  157. 157.
    George BA, Zhou XJ, Toto R. Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis. 2007;49(2):e23–9.PubMedGoogle Scholar
  158. 158.
    Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 2005;23(4):792–9.PubMedGoogle Scholar
  159. 159.
    Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC. VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer. 2010;46(2):439–48.PubMedGoogle Scholar
  160. 160.
    Eremina V, Sood M, Haigh J, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):707–16.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Calne RY, White DJ, Thiru S, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet. 1978;2(8104–5):1323–7.PubMedGoogle Scholar
  162. 162.
    Starzl TE, Todo S, Fung J, Demetris AJ, Venkataramman R, Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet. 1989;2(8670):1000–4.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Myers BD, Ross J, Newton L, Luetscher J, Perlroth M. Cyclosporine-associated chronic nephropathy. N Engl J Med. 1984;311(11):699–705.PubMedGoogle Scholar
  164. 164.
    Blanc-Brunat N, Cochat P, Lang J, Hadj-Aissa A, Mutin M, Vivier G. Cyclosporine A nephrotoxicity: evidence for mesangial foam-cells in dogs. J Submicrosc Cytol. 1987;19(1):149–54.PubMedGoogle Scholar
  165. 165.
    Calne RY, Rolles K, White DJ, et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2(8151):1033–6.PubMedGoogle Scholar
  166. 166.
    Keown PA, Stiller CR, Ulan RA, et al. Immunological and pharmacological monitoring in the clinical use of cyclosporin A. Lancet. 1981;1(8222):686–9.PubMedGoogle Scholar
  167. 167.
    Klintmalm G, Bohman SO, Sundelin B, Wilczek H. Interstitial fibrosis in renal allografts after 12 to 46 months of cyclosporin treatment: beneficial effect of low doses in early post-transplantation period. Lancet. 1984;2(8409):950–4.PubMedGoogle Scholar
  168. 168.
    Xiao Z, Li C, Shan J, et al. Mechanisms of renal cell apoptosis induced by cyclosporine A: a systematic review of in vitro studies. Am J Nephrol. 2011;33(6):558–66.PubMedGoogle Scholar
  169. 169.
    Burdmann AA, Yu L, Andoh TF, Perico N, Bennett WM. Calcineurin inhibitors and sirolimus. 2nd ed. Dordrecht: Kluwer; 2003.Google Scholar
  170. 170.
    Li C, Lim SW, Sun BK, et al. Expression of apoptosis-related factors in chronic cyclosporine nephrotoxicity after cyclosporine withdrawal. Acta Pharmacol Sin. 2004;25(4):401–11.PubMedGoogle Scholar
  171. 171.
    Lee SH, Li C, Lim SW, et al. Attenuation of interstitial inflammation and fibrosis by recombinant human erythropoietin in chronic cyclosporine nephropathy. Am J Nephrol. 2005;25(1):64–76.PubMedGoogle Scholar
  172. 172.
    Li C, Yang CW, Ahn HJ, et al. Colchicine decreases apoptotic cell death in chronic cyclosporine nephrotoxicity. J Lab Clin Med. 2002;139(6):364–71.PubMedGoogle Scholar
  173. 173.
    Ghee JY, Han DH, Song HK, et al. The role of macrophage in the pathogenesis of chronic cyclosporine-induced nephropathy. Nephrol Dial Transplant. 2008;23(12):4061–9.PubMedGoogle Scholar
  174. 174.
    Chung BH, Li C, Sun BK, et al. Rosiglitazone protects against cyclosporine-induced pancreatic and renal injury in rats. Am J Transplant. 2005;5(8):1856–67.PubMedGoogle Scholar
  175. 175.
    Lee SY, Jo SK, Cho WY, Kim HK, Won NH. The effect of alpha-melanocyte-stimulating hormone on renal tubular cell apoptosis and tubulointerstitial fibrosis in cyclosporine A nephrotoxicity. Transplantation. 2004;78(12):1756–64.PubMedGoogle Scholar
  176. 176.
    Disel U, Paydas S, Dogan A, Gulfiliz G, Yavuz S. Effect of colchicine on cyclosporine nephrotoxicity, reduction of TGF-beta overexpression, apoptosis, and oxidative damage: an experimental animal study. Transplant Proc. 2004;36(5):1372–6.PubMedGoogle Scholar
  177. 177.
    Pallet N, Rabant M, Xu-Dubois YC, et al. Response of human renal tubular cells to cyclosporine and sirolimus: a toxicogenomic study. Toxicol Appl Pharmacol. 2008;229(2):184–96.PubMedGoogle Scholar
  178. 178.
    Pallet N, Bouvier N, Bendjallabah A, et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant. 2008;8(11):2283–96.PubMedGoogle Scholar
  179. 179.
    Chomette G, Auriol M, Beaufils H, Rottemburg J, Cabrol C. Morphology of cyclosporine nephrotoxicity in human heart transplant recipients. J Heart Transplant. 1986;5(4):273–8.PubMedGoogle Scholar
  180. 180.
    Dickenmann M, Oettl T, Mihatsch MJ. Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis. 2008;51(3):491–503.PubMedGoogle Scholar
  181. 181.
    Han SW, Li C, Ahn KO, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol. 2008;28(5):707–14.PubMedGoogle Scholar
  182. 182.
    Lim SW, Li C, Sun BK, et al. Long-term treatment with cyclosporine decreases aquaporins and urea transporters in the rat kidney. Am J Physiol Renal Physiol. 2004;287(1):F139–51.PubMedGoogle Scholar
  183. 183.
    Thomas SE, Andoh TF, Pichler RH, et al. Accelerated apoptosis characterizes cyclosporine-associated interstitial fibrosis. Kidney Int. 1998;53(4):897–908.PubMedGoogle Scholar
  184. 184.
    Litalien C, Jacqz-Aigrain E. Risks and benefits of nonsteroidal anti-inflammatory drugs in children: a comparison with paracetamol. Paediatr Drugs. 2001;3(11):817–58.PubMedGoogle Scholar
  185. 185.
    Cuzzolin L, Dal Cere M, Fanos V. NSAID-induced nephrotoxicity from the fetus to the child. Drug Saf. 2001;24(1):9–18.PubMedGoogle Scholar
  186. 186.
    Benini D, Fanos V, Cuzzolin L, Tato L. In utero exposure to nonsteroidal anti-inflammatory drugs: neonatal renal failure. Pediatr Nephrol. 2004;19(2):232–4.PubMedGoogle Scholar
  187. 187.
    Krause I, Cleper R, Eisenstein B, Davidovits M. Acute renal failure, associated with non-steroidal anti-inflammatory drugs in healthy children. Pediatr Nephrol. 2005;20(9):1295–8.PubMedGoogle Scholar
  188. 188.
    Chan FK, Hung LC, Suen BY, et al. Celecoxib versus diclofenac and omeprazole in reducing the risk of recurrent ulcer bleeding in patients with arthritis. N Engl J Med. 2002;347(26):2104–10.PubMedGoogle Scholar
  189. 189.
    Cheng HF, Harris RC. Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des. 2005;11(14):1795–804.PubMedGoogle Scholar
  190. 190.
    Fletcher JT, Graf N, Scarman A, Saleh H, Alexander SI. Nephrotoxicity with cyclooxygenase 2 inhibitor use in children. Pediatr Nephrol. 2006;21(12):1893–7.PubMedGoogle Scholar
  191. 191.
    Bennett WM, Henrich WL, Stoff JS. The renal effects of nonsteroidal anti-inflammatory drugs: summary and recommendations. Am J Kidney Dis. 1996;28(1 Suppl 1):S56–62.PubMedGoogle Scholar
  192. 192.
    Seyberth HW, Leonhardt A, Tonshoff B, Gordjani N. Prostanoids in paediatric kidney diseases. Pediatr Nephrol. 1991;5(5):639–49.PubMedGoogle Scholar
  193. 193.
    Briguori C, Marenzi G. Contrast-induced nephropathy: pharmacological prophylaxis. Kidney Int Suppl. 2006;68(100):S30–8.Google Scholar
  194. 194.
    Murphy SW, Barrett BJ, Parfrey PS. Contrast nephropathy. J Am Soc Nephrol. 2000;11(1):177–82.PubMedGoogle Scholar
  195. 195.
    Barrett BJ. Contrast nephrotoxicity. J Am Soc Nephrol. 1994;5(2):125–37.PubMedGoogle Scholar
  196. 196.
    Tepel M, Zidek W. Acetylcysteine for radiocontrast nephropathy. Curr Opin Crit Care. 2001;7(6):390–2.PubMedGoogle Scholar
  197. 197.
    Tepel M, Zidek W. N-Acetylcysteine in nephrology; contrast nephropathy and beyond. Curr Opin Nephrol Hypertens. 2004;13(6):649–54.PubMedGoogle Scholar
  198. 198.
    Edwards JR, Prozialeck WC. Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol. 2009;238(3):289–93.PubMedCentralPubMedGoogle Scholar
  199. 199.
    Sabath E, Robles-Osorio ML. Renal health and the environment: heavy metal nephrotoxicity. Nefrologia. 2012;32(3):279–86.PubMedGoogle Scholar
  200. 200.
    Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. 2010;23(5):897–926.PubMedGoogle Scholar
  201. 201.
    Liu Y, Liu J, Klaassen CD. Metallothionein-null and wild-type mice show similar cadmium absorption and tissue distribution following oral cadmium administration. Toxicol Appl Pharmacol. 2001;175(3):253–9.PubMedGoogle Scholar
  202. 202.
    Prozialeck WC, Vaidya VS, Liu J, et al. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007;72(8):985–93.PubMedCentralPubMedGoogle Scholar
  203. 203.
    Fujishiro H, Okugaki S, Kubota K, Fujiyama T, Miyataka H, Himeno S. The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells. J Appl Toxicol. 2009;29(5):367–73.PubMedGoogle Scholar
  204. 204.
    Thevenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 2010;23(5):857–75.PubMedGoogle Scholar
  205. 205.
    Barbier O, Jacquillet G, Tauc M, Poujeol P, Cougnon M. Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol. 2004;287(5):F1067–75.PubMedGoogle Scholar
  206. 206.
    Olivi L, Sisk J, Bressler J. Involvement of DMT1 in uptake of Cd in MDCK cells: role of protein kinase C. Am J Physiol Cell Physiol. 2001;281(3):C793–800.PubMedGoogle Scholar
  207. 207.
    Hirano S, Sun X, DeGuzman CA, et al. p38 MAPK/HSP25 signaling mediates cadmium-induced contraction of mesangial cells and renal glomeruli. Am J Physiol Renal Physiol. 2005;288(6):F1133–43.PubMedGoogle Scholar
  208. 208.
    Gunawardana CG, Martinez RE, Xiao W, Templeton DM. Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. Am J Physiol Renal Physiol. 2006;290(5):F1074–82.PubMedGoogle Scholar
  209. 209.
    Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol. 2009;238(3):215–20.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Meyer PA, Brown MJ, Falk H. Global approach to reducing lead exposure and poisoning. Mutat Res. 2008;659(1–2):166–75.PubMedGoogle Scholar
  211. 211.
    Bennett WM. Lead nephropathy. Kidney Int. 1985;28(2):212–20.PubMedGoogle Scholar
  212. 212.
    Wang L, Wang H, Hu M, Cao J, Chen D, Liu Z. Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. 2009;83(5):417–27.PubMedGoogle Scholar
  213. 213.
    Chiu TY, Teng HC, Huang PC, Kao FJ, Yang DM. Dominant role of Orai1 with STIM1 on the cytosolic entry and cytotoxicity of lead ions. Toxicol Sci. 2009;110(2):353–62.PubMedGoogle Scholar
  214. 214.
    Bravo Y, Quiroz Y, Ferrebuz A, Vaziri ND, Rodriguez-Iturbe B. Mycophenolate mofetil administration reduces renal inflammation, oxidative stress, and arterial pressure in rats with lead-induced hypertension. Am J Physiol Renal Physiol. 2007;293(2):F616–23.PubMedGoogle Scholar
  215. 215.
    Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2008;295(2):H454–65.PubMedCentralPubMedGoogle Scholar
  216. 216.
    Ni Z, Hou S, Barton CH, Vaziri ND. Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney Int. 2004;66(6):2329–36.PubMedGoogle Scholar
  217. 217.
    Cosyns JP, Dehoux JP, Guiot Y, et al. Chronic aristolochic acid toxicity in rabbits: a model of Chinese herbs nephropathy? Kidney Int. 2001;59(6):2164–73.PubMedGoogle Scholar
  218. 218.
    Yang L, Su T, Li XM, et al. Aristolochic acid nephropathy: variation in presentation and prognosis. Nephrol Dial Transplant. 2012;27(1):292–8.PubMedGoogle Scholar
  219. 219.
    Vanherweghem JL, Depierreux M, Tielemans C, et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet. 1993;341(8842):387–91.PubMedGoogle Scholar
  220. 220.
    Lord GM, Tagore R, Cook T, Gower P, Pusey CD. Nephropathy caused by Chinese herbs in the UK. Lancet. 1999;354(9177):481–2.PubMedGoogle Scholar
  221. 221.
    Reginster F, Jadoul M, van Ypersele de Strihou C. Chinese herbs nephropathy presentation, natural history and fate after transplantation. Nephrol Dial Transplant. 1997;12(1):81–6.PubMedGoogle Scholar
  222. 222.
    Swanepoel C, Naicker S, Moosa R, Katz I, Suleiman SM, Twahir M. Nephrotoxins in Africa. 2nd ed. Dordrecht: Kluwer; 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PediatricsToho University Faculty of MedicineMeguro-ku, TokyoJapan

Personalised recommendations