Advertisement

Renal Manifestations of Metabolic Disorders in Children

  • Francesco Emma
  • William G. van’t Hoff
  • Carlo Dionisi Vici
Living reference work entry

Abstract

While the majority of children with renal dysfunction have a structural, immunological, or infective disorder, some have a metabolic defect arising from an abnormality in the biochemical pathways of cell metabolism. Moreover, improved survival of patients with metabolic disorders has uncovered in many cases symptoms secondary to chronic renal lesions that were not apparent when these diseases where first described (e.g., methylmalonic acidemia). Conversely, extrarenal manifestations have become apparent in other patients with metabolic diseases that during childhood manifest primarily with isolated renal or urological symptoms (e.g., nephropathic cystinosis). Pediatric nephrologists should always remain vigilant to the possibility of a metabolic disorder, especially when children have extrarenal symptoms.

Keywords

Fabry Disease Hemolytic Uremic Syndrome Glycogen Storage Disease Tubular Dysfunction Fanconi Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C. Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet. 2006;142C(2):104–12.PubMedGoogle Scholar
  2. 2.
    Fenton WA, Gravel RA, Rosenblatt DS. Disorders of propionate and methylmalonate metabolism. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, Gibson KM, et al, editors. The online metabolic and molecular bases of inherited disease. New York: McGraw-Hill.Google Scholar
  3. 3.
    Coelho D, Suormala T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold RF, et al. Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med. 2008;358(14):1454–64.PubMedGoogle Scholar
  4. 4.
    Horster F, Garbade SF, Zwickler T, Aydin HI, Bodamer OA, Burlina AB, et al. Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis. 2009;32(5):630–9.PubMedGoogle Scholar
  5. 5.
    Cosson MA, Benoist JF, Touati G, Dechaux M, Royer N, Grandin L, et al. Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab. 2009;97(3):172–8.PubMedGoogle Scholar
  6. 6.
    O’Shea CJ, Sloan JL, Wiggs EA, Pao M, Gropman A, Baker EH, et al. Neurocognitive phenotype of isolated methylmalonic acidemia. Pediatrics. 2012;129(6):e1541–51.PubMedCentralPubMedGoogle Scholar
  7. 7.
    D’Angio CT, Dillon MJ, Leonard JV. Renal tubular dysfunction in methylmalonic acidaemia. Eur J Pediatr. 1991;150(4):259–63.PubMedGoogle Scholar
  8. 8.
    Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148(4):344–8.PubMedGoogle Scholar
  9. 9.
    Horster F, Baumgartner MR, Viardot C, Suormala T, Burgard P, Fowler B, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res. 2007;62(2):225–30.PubMedGoogle Scholar
  10. 10.
    Hauser NS, Manoli I, Graf JC, Sloan J, Venditti CP. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations. Am J Clin Nutr. 2011;93(1):47–56.PubMedCentralPubMedGoogle Scholar
  11. 11.
    van’t Hoff W, McKiernan PJ, Surtees RA, Leonard JV. Liver transplantation for methylmalonic acidaemia. Eur J Pediatr. 1999;158 Suppl 2:S70–4.Google Scholar
  12. 12.
    Kruszka PS, Manoli I, Sloan JL, Kopp JB, Venditti CP. Renal growth in isolated methylmalonic acidemia. Genet Med. 2013;15(12):990–6.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S, et al. Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J. 2009;23(4):1252–61.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Zsengeller ZK, Aljinovic N, Teot LA, Korson M, Rodig N, Sloan JL, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.PubMedGoogle Scholar
  15. 15.
    Manoli I, Sysol JR, Li L, Houillier P, Garone C, Wang C, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110(33):13552–7.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Morath MA, Okun JG, Muller IB, Sauer SW, Horster F, Hoffmann GF, et al. Neurodegeneration and chronic renal failure in methylmalonic aciduria–a pathophysiological approach. J Inherit Metab Dis. 2008;31(1):35–43.PubMedGoogle Scholar
  17. 17.
    Melo DR, Mirandola SR, Assuncao NA, Castilho RF. Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism. J Neurosci Res. 2012;90(6):1190–9.PubMedGoogle Scholar
  18. 18.
    Schmitt CP, Mehls O, Trefz FK, Horster F, Weber TL, Kolker S. Reversible end-stage renal disease in an adolescent patient with methylmalonic aciduria. Pediatr Nephrol. 2004;19(10):1182–4.PubMedGoogle Scholar
  19. 19.
    van ’t Hoff WG, Dixon M, Taylor J, Mistry P, Rolles K, Rees L, et al. Combined liver-kidney transplantation in methylmalonic acidemia. J Pediatr. 1998;132(6):1043–4.Google Scholar
  20. 20.
    Vernon HJ, Sperati CJ, King JD, Poretti A, Miller NR, Sloan JL, et al. A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with mut methylmalonic acidemia. J Inherit Metab Dis. 2014;37:899–907.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Kolker S, Sauer SW, Surtees RA, Leonard JV. The aetiology of neurological complications of organic acidaemias–a role for the blood–brain barrier. J Inherit Metab Dis. 2006;29(6):701–4; discussion 5–6.PubMedGoogle Scholar
  22. 22.
    Kasahara M, Horikawa R, Tagawa M, Uemoto S, Yokoyama S, Shibata Y, et al. Current role of liver transplantation for methylmalonic acidemia: a review of the literature. Pediatr Transplant. 2006;10(8):943–7.PubMedGoogle Scholar
  23. 23.
    Kamei K, Ito S, Shigeta T, Sakamoto S, Fukuda A, Horikawa R, et al. Preoperative dialysis for liver transplantation in methylmalonic acidemia. Ther Apher Dial. 2011;15(5):488–92.PubMedGoogle Scholar
  24. 24.
    Morioka D, Kasahara M, Horikawa R, Yokoyama S, Fukuda A, Nakagawa A. Efficacy of living donor liver transplantation for patients with methylmalonic acidemia. Am J Transplant. 2007;7(12):2782–7.PubMedGoogle Scholar
  25. 25.
    Brassier A, Boyer O, Valayannopoulos V, Ottolenghi C, Krug P, Cosson MA, et al. Renal transplantation in 4 patients with methylmalonic aciduria: a cell therapy for metabolic disease. Mol Genet Metab. 2013;110(1–2):106–10.PubMedGoogle Scholar
  26. 26.
    Clothier JC, Chakrapani A, Preece MA, McKiernan P, Gupta R, Macdonald A, et al. Renal transplantation in a boy with methylmalonic acidaemia. J Inherit Metab Dis. 2011;34(3):695–700.PubMedGoogle Scholar
  27. 27.
    Coman D, Huang J, McTaggart S, Sakamoto O, Ohura T, McGill J, et al. Renal transplantation in a 14-year-old girl with vitamin B12-responsive cblA-type methylmalonic acidaemia. Pediatr Nephrol. 2006;21(2):270–3.PubMedGoogle Scholar
  28. 28.
    Lubrano R, Elli M, Rossi M, Travasso E, Raggi C, Barsotti P, et al. Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at 10 years and review of the literature. Pediatr Nephrol. 2007;22(8):1209–14.PubMedGoogle Scholar
  29. 29.
    Van Calcar SC, Harding CO, Lyne P, Hogan K, Banerjee R, Sollinger H, et al. Renal transplantation in a patient with methylmalonic acidaemia. J Inherit Metab Dis. 1998;21(7):729–37.PubMedGoogle Scholar
  30. 30.
    Lubrano R, Bellelli E, Gentile I, Paoli S, Carducci C, Carducci C, et al. Pregnancy in a methylmalonic acidemia patient with kidney transplantation: a case report. Am J Transplant. 2013;13(7):1918–22.PubMedGoogle Scholar
  31. 31.
    Carmel R, Green R, Rosenblatt DS, Watkins D. Update on cobalamin, folate, and homocysteine. Hematology Am Soc Hematol Educ Program. 2003:62–81.Google Scholar
  32. 32.
    Fischer S, Huemer M, Baumgartner M, Deodato F, Ballhausen D, Boneh A, et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis. 2014;37:831–40.PubMedGoogle Scholar
  33. 33.
    Komhoff M, Roofthooft MT, Westra D, Teertstra TK, Losito A, van de Kar NC, et al. Combined pulmonary hypertension and renal thrombotic microangiopathy in cobalamin C deficiency. Pediatrics. 2013;132(2):e540–4.PubMedGoogle Scholar
  34. 34.
    Morel CF, Lerner-Ellis JP, Rosenblatt DS. Combined methylmalonic aciduria and homocystinuria (cblC): phenotype-genotype correlations and ethnic-specific observations. Mol Genet Metab. 2006;88(4):315–21.PubMedGoogle Scholar
  35. 35.
    Labrune P, Zittoun J, Duvaltier I, Trioche P, Marquet J, Niaudet P, et al. Haemolytic uraemic syndrome and pulmonary hypertension in a patient with methionine synthase deficiency. Eur J Pediatr. 1999;158(9):734–9.PubMedGoogle Scholar
  36. 36.
    Iodice FG, Di Chiara L, Boenzi S, Aiello C, Monti L, Cogo P, et al. Cobalamin C defect presenting with isolated pulmonary hypertension. Pediatrics. 2013;132(1):e248–51.PubMedGoogle Scholar
  37. 37.
    Menni F, Testa S, Guez S, Chiarelli G, Alberti L, Esposito S. Neonatal atypical hemolytic uremic syndrome due to methylmalonic aciduria and homocystinuria. Pediatr Nephrol. 2012;27(8):1401–5.PubMedGoogle Scholar
  38. 38.
    Brunelli SM, Meyers KE, Guttenberg M, Kaplan P, Kaplan BS. Cobalamin C deficiency complicated by an atypical glomerulopathy. Pediatr Nephrol. 2002;17(10):800–3.PubMedGoogle Scholar
  39. 39.
    Martinelli D, Deodato F, Dionisi-Vici C. Cobalamin C defect: natural history, pathophysiology, and treatment. J Inherit Metab Dis. 2011;34(1):127–35.PubMedGoogle Scholar
  40. 40.
    Nogueira C, Aiello C, Cerone R, Martins E, Caruso U, Moroni I, et al. Spectrum of MMACHC mutations in Italian and Portuguese patients with combined methylmalonic aciduria and homocystinuria, cblC type. Mol Genet Metab. 2008;93(4):475–80.PubMedGoogle Scholar
  41. 41.
    Cornec-Le Gall E, Delmas Y, De Parscau L, Doucet L, Ogier H, Benoist JF, et al. Adult-onset eculizumab-resistant hemolytic uremic syndrome associated with cobalamin C deficiency. Am J Kidney Dis. 2014;63(1):119–23.PubMedGoogle Scholar
  42. 42.
    Verroust PJ, Birn H, Nielsen R, Kozyraki R, Christensen EI. The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. Kidney Int. 2002;62(3):745–56.PubMedGoogle Scholar
  43. 43.
    Storm T, Emma F, Verroust PJ, Hertz JM, Nielsen R, Christensen EI. A patient with cubilin deficiency. N Engl J Med. 2011;364(1):89–91.PubMedGoogle Scholar
  44. 44.
    Storm T, Zeitz C, Cases O, Amsellem S, Verroust PJ, Madsen M, et al. Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome. BMC Med Genet. 2013;14:111.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Grasbeck R. Imerslund-Grasbeck syndrome (selective vitamin B(12) malabsorption with proteinuria). Orphanet J Rare Dis. 2006;1:17.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, et al. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis. 2011;6:27.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Weinstein DA, Wolfsdorf JI. Effect of continuous glucose therapy with uncooked cornstarch on the long-term clinical course of type 1a glycogen storage disease. Eur J Pediatr. 2002;161 Suppl 1:S35–9.PubMedGoogle Scholar
  48. 48.
    Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318(1):7–11.PubMedGoogle Scholar
  49. 49.
    Baker L, Dahlem S, Goldfarb S, Kern EF, Stanley CA, Egler J, et al. Hyperfiltration and renal disease in glycogen storage disease, type I. Kidney Int. 1989;35(6):1345–50.PubMedGoogle Scholar
  50. 50.
    Martens DH, Rake JP, Navis G, Fidler V, van Dael CM, Smit GP. Renal function in glycogen storage disease type I, natural course, and renopreservative effects of ACE inhibition. Clin J Am Soc Nephrol. 2009;4(11):1741–6.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Oktenli C. Renal magnesium wasting, hypomagnesemic hypocalcemia, hypocalciuria and osteopenia in a patient with glycogenosis type II. Am J Nephrol. 2000;20(5):412–7.PubMedGoogle Scholar
  52. 52.
    Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP, et al. Guidelines for management of glycogen storage disease type I – European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr. 2002;161 Suppl 1:S112–9.PubMedGoogle Scholar
  53. 53.
    Restaino I, Kaplan BS, Stanley C, Baker L. Nephrolithiasis, hypocitraturia, and a distal renal tubular acidification defect in type 1 glycogen storage disease. J Pediatr. 1993;122(3):392–6.PubMedGoogle Scholar
  54. 54.
    Pozzato C, Botta A, Melgara C, Fiori L, Gianni ML, Riva E. Sonographic findings in type I glycogen storage disease. J Clin Ultrasound. 2001;29(8):456–61.PubMedGoogle Scholar
  55. 55.
    Reitsma-Bierens WC, Smit GP, Troelstra JA. Renal function and kidney size in glycogen storage disease type I. Pediatr Nephrol. 1992;6(3):236–8.PubMedGoogle Scholar
  56. 56.
    Mundy HR, Lee PJ. Glycogenosis type I and diabetes mellitus: a common mechanism for renal dysfunction? Med Hypotheses. 2002;59(1):110–4.PubMedGoogle Scholar
  57. 57.
    Yiu WH, Mead PA, Jun HS, Mansfield BC, Chou JY. Oxidative stress mediates nephropathy in type Ia glycogen storage disease. Lab Invest. 2010;90(4):620–9.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Yiu WH, Pan CJ, Ruef RA, Peng WT, Starost MF, Mansfield BC, et al. Angiotensin mediates renal fibrosis in the nephropathy of glycogen storage disease type Ia. Kidney Int. 2008;73(6):716–23.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Clar J, Gri B, Calderaro J, Birling MC, Herault Y, Smit GP, et al. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int. 2014;86:747–56.PubMedGoogle Scholar
  60. 60.
    Lee PJ, Dalton RN, Shah V, Hindmarsh PC, Leonard JV. Glomerular and tubular function in glycogen storage disease. Pediatr Nephrol. 1995;9(6):705–10.PubMedGoogle Scholar
  61. 61.
    Verani R, Bernstein J. Renal glomerular and tubular abnormalities in glycogen storage disease type I. Arch Pathol Lab Med. 1988;112(3):271–4.PubMedGoogle Scholar
  62. 62.
    Yokoyama K, Hayashi H, Hinoshita F, Yamada A, Suzuki Y, Ogura Y, et al. Renal lesion of type Ia glycogen storage disease: the glomerular size and renal localization of apolipoprotein. Nephron. 1995;70(3):348–52.PubMedGoogle Scholar
  63. 63.
    Martin AP, Bartels M, Schreiber S, Buehrdel P, Hauss J, Fangmann J. Successful staged kidney and liver transplantation for glycogen storage disease type Ib: a case report. Transplant Proc. 2006;38(10):3615–9.PubMedGoogle Scholar
  64. 64.
    Maya Aparicio AC, Bernal Bellido C, Tinoco Gonzalez J, Garcia Ruiz S, Aguilar Romero L, Marin Gomez LM, et al. Fifteen years of follow-up of a liver transplant recipient with glycogen storage disease type Ia (Von Gierke disease). Transplant Proc. 2013;45(10):3668–9.PubMedGoogle Scholar
  65. 65.
    Mannstadt M, Magen D, Segawa H, Stanley T, Sharma A, Sasaki S, et al. Fanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations. J Clin Endocrinol Metab. 2012;97(10):E1978–86.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Manz F, Bickel H, Brodehl J, Feist D, Gellissen K, Gescholl-Bauer B, et al. Fanconi-Bickel syndrome. Pediatr Nephrol. 1987;1(3):509–18.PubMedGoogle Scholar
  67. 67.
    Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17(3):324–6.PubMedGoogle Scholar
  68. 68.
    Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J. Fanconi-Bickel syndrome–a congenital defect of the liver-type facilitative glucose transporter. J Inherit Metab Dis. 1998;21(3):191–4.PubMedGoogle Scholar
  69. 69.
    Grunert SC, Schwab KO, Pohl M, Sass JO, Santer R. Fanconi-Bickel syndrome: GLUT2 mutations associated with a mild phenotype. Mol Genet Metab. 2012;105(3):433–7.PubMedGoogle Scholar
  70. 70.
    Leturque A, Brot-Laroche E, Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab. 2009;296(5):E985–92.PubMedGoogle Scholar
  71. 71.
    Santer R, Calado J. Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010;5(1):133–41.PubMedGoogle Scholar
  72. 72.
    Michau A, Guillemain G, Grosfeld A, Vuillaumier-Barrot S, Grand T, Keck M, et al. Mutations in SLC2A2 gene reveal hGLUT2 function in pancreatic beta cell development. J Biol Chem. 2013;288(43):31080–92.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Sansbury FH, Flanagan SE, Houghton JA, Shuixian Shen FL, Al-Senani AM, Habeb AM, et al. SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia. 2012;55(9):2381–5.PubMedGoogle Scholar
  74. 74.
    Berry GT, Baynes JW, Wells-Knecht KJ, Szwergold BS, Santer R. Elements of diabetic nephropathy in a patient with GLUT 2 deficiency. Mol Genet Metab. 2005;86(4):473–7.PubMedGoogle Scholar
  75. 75.
    Kedzierska K, Kwiatkowski S, Torbe A, Marchelek-Mysliwiec M, Marcinkiewicz O, Bobrek-Lesiakowska K, et al. Successful pregnancy in the patient with Fanconi-Bickel syndrome undergoing daily hemodialysis. Am J Med Genet A. 2011;155A(8):2028–30.PubMedGoogle Scholar
  76. 76.
    Pena L, Charrow J. Fanconi-Bickel syndrome: report of life history and successful pregnancy in an affected patient. Am J Med Genet A. 2011;155A(2):415–7.PubMedGoogle Scholar
  77. 77.
    DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348(26):2656–68.PubMedGoogle Scholar
  78. 78.
    Emma F, Bertini E, Salviati L, Montini G. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 2012;27(4):539–50.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Niaudet P, Rotig A. The kidney in mitochondrial cytopathies. Kidney Int. 1997;51(4):1000–7.PubMedGoogle Scholar
  80. 80.
    Emma F, Montini G, Salviati L, Dionisi-Vici C. Renal mitochondrial cytopathies. Int J Nephrol. 2011;2011:609213.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Bodemer C, Rotig A, Rustin P, Cormier V, Niaudet P, Saudubray JM, et al. Hair and skin disorders as signs of mitochondrial disease. Pediatrics. 1999;103(2):428–33.PubMedGoogle Scholar
  82. 82.
    Martin-Hernandez E, Garcia-Silva MT, Vara J, Campos Y, Cabello A, Muley R, et al. Renal pathology in children with mitochondrial diseases. Pediatr Nephrol. 2005;20(9):1299–305.PubMedGoogle Scholar
  83. 83.
    Au KM, Lau SC, Mak YF, Lai WM, Chow TC, Chen ML, et al. Mitochondrial DNA deletion in a girl with Fanconi’s syndrome. Pediatr Nephrol. 2007;22(1):136–40.PubMedGoogle Scholar
  84. 84.
    Kuwertz-Broking E, Koch HG, Marquardt T, Rossi R, Helmchen U, Muller-Hocker J, et al. Renal Fanconi syndrome: first sign of partial respiratory chain complex IV deficiency. Pediatr Nephrol. 2000;14(6):495–8.PubMedGoogle Scholar
  85. 85.
    Mochizuki H, Joh K, Kawame H, Imadachi A, Nozaki H, Ohashi T, et al. Mitochondrial encephalomyopathies preceded by de-Toni-Debre-Fanconi syndrome or focal segmental glomerulosclerosis. Clin Nephrol. 1996;46(5):347–52.PubMedGoogle Scholar
  86. 86.
    Morris AA, Taylor RW, Birch-Machin MA, Jackson MJ, Coulthard MG, Bindoff LA, et al. Neonatal Fanconi syndrome due to deficiency of complex III of the respiratory chain. Pediatr Nephrol. 1995;9(4):407–11.PubMedGoogle Scholar
  87. 87.
    De Meirleir L, Seneca S, Damis E, Sepulchre B, Hoorens A, Gerlo E, et al. Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene. Am J Med Genet A. 2003;121A(2):126–31.PubMedGoogle Scholar
  88. 88.
    Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, Lopez LC, et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet. 2009;84(5):558–66.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Gilbert RD, Emms M. Pearson’s syndrome presenting with Fanconi syndrome. Ultrastruct Pathol. 1996;20(5):473–5.PubMedGoogle Scholar
  90. 90.
    Lee YS, Yap HK, Barshop BA, Lee YS, Rajalingam S, Loke KY. Mitochondrial tubulopathy: the many faces of mitochondrial disorders. Pediatr Nephrol. 2001;16(9):710–2.PubMedGoogle Scholar
  91. 91.
    Liu HM, Tsai LP, Chien YH, Wu JF, Weng WC, Peng SF, et al. A novel 3670-base pair mitochondrial DNA deletion resulting in multi-systemic manifestations in a child. Pediatr Neonatol. 2012;53(4):264–8.PubMedGoogle Scholar
  92. 92.
    Mori K, Narahara K, Ninomiya S, Goto Y, Nonaka I. Renal and skin involvement in a patient with complete Kearns-Sayre syndrome. Am J Med Genet. 1991;38(4):583–7.PubMedGoogle Scholar
  93. 93.
    Niaudet P, Heidet L, Munnich A, Schmitz J, Bouissou F, Gubler MC, et al. Deletion of the mitochondrial DNA in a case of de Toni-Debre-Fanconi syndrome and Pearson syndrome. Pediatr Nephrol. 1994;8(2):164–8.PubMedGoogle Scholar
  94. 94.
    O’Toole JF. Renal manifestations of genetic mitochondrial disease. Int J Nephrol Renovasc Dis. 2014;7:57–67.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Ogier H, Lombes A, Scholte HR, Poll-The BT, Fardeau M, Alcardi J, et al. de Toni-Fanconi-Debre syndrome with Leigh syndrome revealing severe muscle cytochrome c oxidase deficiency. J Pediatr. 1988;112(5):734–9.PubMedGoogle Scholar
  96. 96.
    Pitchon EM, Cachat F, Jacquemont S, Hinard C, Borruat FX, Schorderet DF, et al. Patient with Fanconi Syndrome (FS) and retinitis pigmentosa (RP) caused by a deletion and duplication of mitochondrial DNA (mtDNA). Klin Monbl Augenheilkd. 2007;224(4):340–3.PubMedGoogle Scholar
  97. 97.
    Topaloglu R, Lebre AS, Demirkaya E, Kuskonmaz B, Coskun T, Orhan D, et al. Two new cases with Pearson syndrome and review of Hacettepe experience. Turk J Pediatr. 2008;50(6):572–6.PubMedGoogle Scholar
  98. 98.
    Tzoufi M, Makis A, Chaliasos N, Nakou I, Siomou E, Tsatsoulis A, et al. A rare case report of simultaneous presentation of myopathy, Addison’s disease, primary hypoparathyroidism, and Fanconi syndrome in a child diagnosed with Kearns-Sayre syndrome. Eur J Pediatr. 2013;172(4):557–61.PubMedGoogle Scholar
  99. 99.
    Emma F, Pizzini C, Tessa A, Di Giandomenico S, Onetti-Muda A, Santorelli FM, et al. “Bartter-like” phenotype in Kearns-Sayre syndrome. Pediatr Nephrol. 2006;21(3):355–60.PubMedGoogle Scholar
  100. 100.
    Eviatar L, Shanske S, Gauthier B, Abrams C, Maytal J, Slavin M, et al. Kearns-Sayre syndrome presenting as renal tubular acidosis. Neurology. 1990;40(11):1761–3.PubMedGoogle Scholar
  101. 101.
    Goto Y, Itami N, Kajii N, Tochimaru H, Endo M, Horai S. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns-Sayre syndrome. J Pediatr. 1990;116(6):904–10.PubMedGoogle Scholar
  102. 102.
    Katsanos KH, Elisaf M, Bairaktari E, Tsianos EV. Severe hypomagnesemia and hypoparathyroidism in Kearns-Sayre syndrome. Am J Nephrol. 2001;21(2):150–3.PubMedGoogle Scholar
  103. 103.
    Matsutani H, Mizusawa Y, Shimoda M, Niimura F, Takeda A, Shimohira M, et al. Partial deficiency of cytochrome c oxidase with isolated proximal renal tubular acidosis and hypercalciuria. Child Nephrol Urol. 1992;12(4):221–4.PubMedGoogle Scholar
  104. 104.
    Di Donato S. Multisystem manifestations of mitochondrial disorders. J Neurol. 2009;256(5):693–710.PubMedGoogle Scholar
  105. 105.
    Guery B, Choukroun G, Noel LH, Clavel P, Rotig A, Lebon S, et al. The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. J Am Soc Nephrol. 2003;14(8):2099–108.PubMedGoogle Scholar
  106. 106.
    Cheong HI, Chae JH, Kim JS, Park HW, Ha IS, Hwang YS, et al. Hereditary glomerulopathy associated with a mitochondrial tRNA(Leu) gene mutation. Pediatr Nephrol. 1999;13(6):477–80.PubMedGoogle Scholar
  107. 107.
    Doleris LM, Hill GS, Chedin P, Nochy D, Bellanne-Chantelot C, Hanslik T, et al. Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney Int. 2000;58(5):1851–8.PubMedGoogle Scholar
  108. 108.
    Hirano M, Konishi K, Arata N, Iyori M, Saruta T, Kuramochi S, et al. Renal complications in a patient with A-to-G mutation of mitochondrial DNA at the 3243 position of leucine tRNA. Intern Med. 2002;41(2):113–8.PubMedGoogle Scholar
  109. 109.
    Hotta O, Inoue CN, Miyabayashi S, Furuta T, Takeuchi A, Taguma Y. Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation. Kidney Int. 2001;59(4):1236–43.PubMedGoogle Scholar
  110. 110.
    Jansen JJ, Maassen JA, van der Woude FJ, Lemmink HA, van den Ouweland JM, t’ Hart LM, et al. Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J Am Soc Nephrol. 1997;8(7):1118–24.PubMedGoogle Scholar
  111. 111.
    Kurogouchi F, Oguchi T, Mawatari E, Yamaura S, Hora K, Takei M, et al. A case of mitochondrial cytopathy with a typical point mutation for MELAS, presenting with severe focal-segmental glomerulosclerosis as main clinical manifestation. Am J Nephrol. 1998;18(6):551–6.PubMedGoogle Scholar
  112. 112.
    Lowik MM, Hol FA, Steenbergen EJ, Wetzels JF, van den Heuvel LP. Mitochondrial tRNALeu(UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2005;20(2):336–41.PubMedGoogle Scholar
  113. 113.
    Nakamura S, Yoshinari M, Doi Y, Yoshizumi H, Katafuchi R, Yokomizo Y, et al. Renal complications in patients with diabetes mellitus associated with an A to G mutation of mitochondrial DNA at the 3243 position of leucine tRNA. Diabetes Res Clin Pract. 1999;44(3):183–9.PubMedGoogle Scholar
  114. 114.
    Seidowsky A, Hoffmann M, Glowacki F, Dhaenens CM, Devaux JP, de Sainte Foy CL, et al. Renal involvement in MELAS syndrome – a series of 5 cases and review of the literature. Clin Nephrol. 2013;80(6):456–63.PubMedGoogle Scholar
  115. 115.
    Rotig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, Edery P, et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet. 2000;356(9227):391–5.PubMedGoogle Scholar
  116. 116.
    Salviati L, Sacconi S, Murer L, Zacchello G, Franceschini L, Laverda AM, et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology. 2005;65(4):606–8.PubMedGoogle Scholar
  117. 117.
    Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358(26):2849–50.PubMedGoogle Scholar
  118. 118.
    Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet. 2006;78(2):345–9.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F, Montini G, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol. 2007;18(10):2773–80.PubMedGoogle Scholar
  120. 120.
    Mollet J, Giurgea I, Schlemmer D, Dallner G, Chretien D, Delahodde A, et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest. 2007;117(3):765–72.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Scalais E, Chafai R, Van Coster R, Bindl L, Nuttin C, Panagiotaraki C, et al. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol. 2013;17(6):625–30.PubMedGoogle Scholar
  122. 122.
    Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79(6):1125–9.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121(5):2013–24.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123(12):5179–89.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem. 2013;288(10):6936–45.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Scott K, Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis. 2014;37(4):609–17.PubMedGoogle Scholar
  127. 127.
    Jaeken J, Hennet T, Matthijs G, Freeze HH. CDG nomenclature: time for a change! Biochim Biophys Acta. 2009;1792(9):825–6.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Jaeken J, Matthijs G, Carchon H, Van Schaftingen E. Defects of N-Glycan synthesis. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, Gibson KM, et al., editors. The online metabolic and molecular bases of inherited disease. New York: McGraw-Hill.Google Scholar
  129. 129.
    Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet. 2014;94(2):161–75.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Horslen SP, Clayton PT, Harding BN, Hall NA, Keir G, Winchester B. Olivopontocerebellar atrophy of neonatal onset and disialotransferrin developmental deficiency syndrome. Arch Dis Child. 1991;66(9):1027–32.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Funke S, Gardeitchik T, Kouwenberg D, Mohamed M, Wortmann SB, Korsch E, et al. Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A. 2013;161A(3):578–84.PubMedGoogle Scholar
  132. 132.
    Hertz-Pannier L, Dechaux M, Sinico M, Emond S, Cormier-Daire V, Saudubray JM, et al. Congenital disorders of glycosylation type I: a rare but new cause of hyperechoic kidneys in infants and children due to early microcystic changes. Pediatr Radiol. 2006;36(2):108–14.PubMedGoogle Scholar
  133. 133.
    Strom EH, Stromme P, Westvik J, Pedersen SJ. Renal cysts in the carbohydrate-deficient glycoprotein syndrome. Pediatr Nephrol. 1993;7(3):253–5.PubMedGoogle Scholar
  134. 134.
    de Lonlay P, Seta N, Barrot S, Chabrol B, Drouin V, Gabriel BM, et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet. 2001;38(1):14–9.PubMedCentralPubMedGoogle Scholar
  135. 135.
    van der Knaap MS, Wevers RA, Monnens L, Jakobs C, Jaeken J, van Wijk JA. Congenital nephrotic syndrome: a novel phenotype of type I carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis. 1996;19(6):787–91.PubMedGoogle Scholar
  136. 136.
    Sinha MD, Horsfield C, Komaromy D, Booth CJ, Champion MP. Congenital disorders of glycosylation: a rare cause of nephrotic syndrome. Nephrol Dial Transplant. 2009;24(8):2591–4.PubMedGoogle Scholar
  137. 137.
    Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19(6):358–71.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.PubMedGoogle Scholar
  139. 139.
    Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3(11):e194.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Cameron JS, Moro F, Simmonds HA. Gout, uric acid and purine metabolism in paediatric nephrology. Pediatr Nephrol. 1993;7(1):105–18.PubMedGoogle Scholar
  141. 141.
    Stapleton FB, Linshaw MA, Hassanein K, Gruskin AB. Uric acid excretion in normal children. J Pediatr. 1978;92(6):911–4.PubMedGoogle Scholar
  142. 142.
    Calabrese G, Simmonds HA, Cameron JS, Davies PM. Precocious familial gout with reduced fractional urate clearance and normal purine enzymes. Q J Med. 1990;75(277):441–50.PubMedGoogle Scholar
  143. 143.
    Sikora P, Pijanowska M, Majewski M, Bienias B, Borzecka H, Zajczkowska M. Acute renal failure due to bilateral xanthine urolithiasis in a boy with Lesch-Nyhan syndrome. Pediatr Nephrol. 2006;21(7):1045–7.PubMedGoogle Scholar
  144. 144.
    Pela I, Donati MA, Procopio E, Fiorini P. Lesch-Nyhan syndrome presenting with acute renal failure in a 3-day-old newborn. Pediatr Nephrol. 2008;23(1):155–8.PubMedGoogle Scholar
  145. 145.
    Simmonds HA, Cameron JS, Barratt TM, Dillon MJ, Meadow SR, Trompeter RS. Purine enzyme defects as a cause of acute renal failure in childhood. Pediatr Nephrol. 1989;3(4):433–7.PubMedGoogle Scholar
  146. 146.
    Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Rinat C, Zoref-Shani E, Ben-Neriah Z, Bromberg Y, Becker-Cohen R, Feinstein S, et al. Molecular, biochemical, and genetic characterization of a female patient with Lesch-Nyhan disease. Mol Genet Metab. 2006;87(3):249–52.PubMedGoogle Scholar
  148. 148.
    Cochat P, Pichault V, Bacchetta J, Dubourg L, Sabot JF, Saban C, et al. Nephrolithiasis related to inborn metabolic diseases. Pediatr Nephrol. 2010;25(3):415–24.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Visser JE, Bar PR, Jinnah HA. Lesch-Nyhan disease and the basal ganglia. Brain Res Brain Res Rev. 2000;32(2–3):449–75.PubMedGoogle Scholar
  150. 150.
    Kaufman JM, Greene ML, Seegmiller JE. Urine uric acid to creatinine rtio–a screening test for inherited disorders of purine metabolism. Phosphoribosyltransferase (PRT) deficiency in X-linked cerebral palsy and in a variant of gout. J Pediatr. 1968;73(4):583–92.PubMedGoogle Scholar
  151. 151.
    Jinnah HA, Ceballos-Picot I, Torres RJ, Visser JE, Schretlen DJ, Verdu A, et al. Attenuated variants of Lesch-Nyhan disease. Brain J Neurol. 2010;133(Pt 3):671–89.Google Scholar
  152. 152.
    George RL, Keenan RT. Genetics of hyperuricemia and gout: implications for the present and future. Curr Rheumatol Rep. 2013;15(2):309.PubMedGoogle Scholar
  153. 153.
    Fu R, Ceballos-Picot I, Torres RJ, Larovere LE, Yamada Y, Nguyen KV, et al. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder. Brain J Neurol. 2014;137(Pt 5):1282–303.Google Scholar
  154. 154.
    Becker MA, Smith PR, Taylor W, Mustafi R, Switzer RL. The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest. 1995;96(5):2133–41.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA. Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med. 1988;85(3):383–90.PubMedGoogle Scholar
  156. 156.
    Engle SJ, Stockelman MG, Chen J, Boivin G, Yum MN, Davies PM, et al. Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis. Proc Natl Acad Sci U S A. 1996;93(11):5307–12.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Fujimori S, Akaoka I, Sakamoto K, Yamanaka H, Nishioka K, Kamatani N. Common characteristics of mutant adenine phosphoribosyltransferases from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet. 1985;71(2):171–6.PubMedGoogle Scholar
  158. 158.
    Marra G, Vercelloni PG, Edefonti A, Manzoni G, Pavesi MA, Fogazzi GB, et al. Adenine phosphoribosyltransferase deficiency: an underdiagnosed cause of lithiasis and renal failure. JIMD Rep. 2012;5:45–8.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet. 2008;74(3):243–51.PubMedGoogle Scholar
  160. 160.
    Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40(4):430–6.PubMedGoogle Scholar
  161. 161.
    Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83(6):744–51.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42.PubMedGoogle Scholar
  163. 163.
    Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82(1):139–49.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Moro F, Ogg CS, Simmonds HA, Cameron JS, Chantler C, McBride MB, et al. Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease. Clin Nephrol. 1991;35(6):263–9.PubMedGoogle Scholar
  165. 165.
    Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 2011;80(4):338–47.PubMedGoogle Scholar
  166. 166.
    Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002;39(12):882–92.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M, et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med. 2013;19(12):1655–60.PubMedGoogle Scholar
  168. 168.
    Bachmann S, Metzger R, Bunnemann B. Tamm-Horsfall protein-mRNA synthesis is localized to the thick ascending limb of Henle’s loop in rat kidney. Histochemistry. 1990;94(5):517–23.PubMedGoogle Scholar
  169. 169.
    Bachmann S, Koeppen-Hagemann I, Kriz W. Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry. 1985;83(6):531–8.PubMedGoogle Scholar
  170. 170.
    Bleyer AJ, Hart TC. Familial juvenile hyperuricaemic nephropathy. QJM. 2003;96(11):867–8.PubMedGoogle Scholar
  171. 171.
    Dahan K, Devuyst O, Smaers M, Vertommen D, Loute G, Poux JM, et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol. 2003;14(11):2883–93.PubMedGoogle Scholar
  172. 172.
    Bollee G, Dahan K, Flamant M, Moriniere V, Pawtowski A, Heidet L, et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clinical journal of the American Society of Nephrology : CJASN. 2011;6(10):2429–38.Google Scholar
  173. 173.
    Fairbanks LD, Cameron JS, Venkat-Raman G, Rigden SP, Rees L, Van THW, et al. Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease. QJM. 2002;95(9):597–607.PubMedGoogle Scholar
  174. 174.
    Labriola L, in Dahan K, Pirson Y. Outcome of kidney transplantation in familial juvenile hyperuricaemic nephropathy. Nephrol Dial Transplant. 2007;22(10):3070–3.PubMedGoogle Scholar
  175. 175.
    Bingham C, Ellard S, van’t Hoff WG, Simmonds HA, Marinaki AM, Badman MK, et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int. 2003;63(5):1645–51.PubMedGoogle Scholar
  176. 176.
    Heidet L, Decramer S, Pawtowski A, Moriniere V, Bandin F, Knebelmann B, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5(6):1079–90.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet’al P, Kalbacova M, et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009;85(2):204–13.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Grunfeld JP, Lidove O, Joly D, Barbey F. Renal disease in Fabry patients. J Inherit Metab Dis. 2001;24 Suppl 2:71–4; discussion 65.PubMedGoogle Scholar
  180. 180.
    Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, et al. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79(1):31–40.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Mayes JS, Scheerer JB, Sifers RN, Donaldson ML. Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin Chim Acta. 1981;112(2):247–51.PubMedGoogle Scholar
  182. 182.
    Linthorst GE, Vedder AC, Aerts JM, Hollak CE. Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta. 2005;353(1–2):201–3.PubMedGoogle Scholar
  183. 183.
    Wang RY, Lelis A, Mirocha J, Wilcox WR. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med. 2007;9(1):34–45.PubMedGoogle Scholar
  184. 184.
    Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008;93(2):112–28.PubMedGoogle Scholar
  185. 185.
    Hopkin RJ, Bissler J, Banikazemi M, Clarke L, Eng CM, Germain DP, et al. Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr Res. 2008;64(5):550–5.PubMedGoogle Scholar
  186. 186.
    Eng CM, Fletcher J, Wilcox WR, Waldek S, Scott CR, Sillence DO, et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007;30(2):184–92.PubMedGoogle Scholar
  187. 187.
    Rolfs A, Bottcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366(9499):1794–6.PubMedGoogle Scholar
  188. 188.
    Tondel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51(5):767–76.PubMedGoogle Scholar
  189. 189.
    Gubler MC, Lenoir G, Grunfeld JP, Ulmann A, Droz D, Habib R. Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int. 1978;13(3):223–35.PubMedGoogle Scholar
  190. 190.
    Ramaswami U, Najafian B, Schieppati A, Mauer M, Bichet DG. Assessment of renal pathology and dysfunction in children with Fabry disease. Clin J Am Soc Nephrol. 2010;5(2):365–70.PubMedGoogle Scholar
  191. 191.
    Schiffmann R. Natural history of Fabry disease in males: preliminary observations. J Inherit Metab Dis. 2001;24 Suppl 2:15–7; discussion 1–2.PubMedGoogle Scholar
  192. 192.
    Sessa A, Meroni M, Battini G, Maglio A, Brambilla PL, Bertella M, et al. Renal pathological changes in Fabry disease. J Inherit Metab Dis. 2001;24 Suppl 2:66–70; discussion 65.PubMedGoogle Scholar
  193. 193.
    Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24(7):2102–11.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med. 2009;11(11):790–6.PubMedGoogle Scholar
  195. 195.
    Mignani R, Feriozzi S, Schaefer RM, Breunig F, Oliveira JP, Ruggenenti P, et al. Dialysis and transplantation in Fabry disease: indications for enzyme replacement therapy. Clin J Am Soc Nephrol. 2010;5(2):379–85.PubMedGoogle Scholar
  196. 196.
    Ries M, Bettis KE, Choyke P, Kopp JB, Austin 3rd HA, Brady RO, et al. Parapelvic kidney cysts: a distinguishing feature with high prevalence in Fabry disease. Kidney Int. 2004;66(3):978–82.PubMedGoogle Scholar
  197. 197.
    Thadhani R, Wolf M, West ML, Tonelli M, Ruthazer R, Pastores GM, et al. Patients with Fabry disease on dialysis in the United States. Kidney Int. 2002;61(1):249–55.PubMedGoogle Scholar
  198. 198.
    Wanner C, Oliveira JP, Ortiz A, Mauer M, Germain DP, Linthorst GE, et al. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry Registry. Clin J Am Soc Nephrol. 2010;5(12):2220–8.PubMedCentralPubMedGoogle Scholar
  199. 199.
    Pisani A, Visciano B, Roux GD, Sabbatini M, Porto C, Parenti G, et al. Enzyme replacement therapy in patients with Fabry disease: state of the art and review of the literature. Mol Genet Metab. 2012;107(3):267–75.PubMedGoogle Scholar
  200. 200.
    Wang RY, Bodamer OA, Watson MS, Wilcox WR, Diseases AWGoDCoLS. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med. 2011;13(5):457–84.PubMedGoogle Scholar
  201. 201.
    Warnock DG, Ortiz A, Mauer M, Linthorst GE, Oliveira JP, Serra AL, et al. Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrol Dial Transplant. 2012;27(3):1042–9.PubMedCentralPubMedGoogle Scholar
  202. 202.
    de Laet C, Dionisi-Vici C, Leonard JV, McKiernan P, Mitchell G, Monti L, et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis. 2013;8:8.PubMedCentralPubMedGoogle Scholar
  203. 203.
    Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, Endo F. A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol. 2000;11(2):291–300.PubMedGoogle Scholar
  204. 204.
    Spencer PD, Roth KS. Effects of succinylacetone on amino acid uptake in the rat kidney. Biochem Med Metab Biol. 1987;37(1):101–9.PubMedGoogle Scholar
  205. 205.
    Santra S, Preece MA, Hulton SA, McKiernan PJ. Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis. 2008;31(3):399–402.PubMedGoogle Scholar
  206. 206.
    Masurel-Paulet A, Poggi-Bach J, Rolland MO, Bernard O, Guffon N, Dobbelaere D, et al. NTBC treatment in tyrosinaemia type I: long-term outcome in French patients. J Inherit Metab Dis. 2008;31(1):81–7.PubMedGoogle Scholar
  207. 207.
    Larochelle J, Alvarez F, Bussieres JF, Chevalier I, Dallaire L, Dubois J, et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Quebec. Mol Genet Metab. 2012;107(1–2):49–54.PubMedGoogle Scholar
  208. 208.
    Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992;340(8823):813–7.PubMedGoogle Scholar
  209. 209.
    Gjone E. Familial lecithin: cholesterol acyltransferase deficiency–a clinical survey. Scand J Clin Lab Invest Suppl. 1974;137:73–82.PubMedGoogle Scholar
  210. 210.
    Imbasciati E, Paties C, Scarpioni L, Mihatsch MJ. Renal lesions in familial lecithin-cholesterol acyltransferase deficiency. Ultrastructural heterogeneity of glomerular changes. Am J Nephrol. 1986;6(1):66–70.PubMedGoogle Scholar
  211. 211.
    Hirashio S, Ueno T, Naito T, Masaki T. Characteristic kidney pathology, gene abnormality and treatments in LCAT deficiency. Clin Exp Nephrol. 2014;18(2):189–93.PubMedGoogle Scholar
  212. 212.
    Sebastio G, Sperandeo MP, Andria G. Lysinuric protein intolerance: reviewing concepts on a multisystem disease. Am J Med Genet C Semin Med Genet. 2011;157C(1):54–62.PubMedGoogle Scholar
  213. 213.
    Tanner LM, Nanto-Salonen K, Niinikoski H, Jahnukainen T, Keskinen P, Saha H, et al. Nephropathy advancing to end-stage renal disease: a novel complication of lysinuric protein intolerance. J Pediatr. 2007;150(6):631–4, 4 e1.PubMedGoogle Scholar
  214. 214.
    Tanner LM, Nanto-Salonen K, Venetoklis J, Kotilainen S, Niinikoski H, Huoponen K, et al. Nutrient intake in lysinuric protein intolerance. J Inherit Metab Dis. 2007;30(5):716–21.PubMedGoogle Scholar
  215. 215.
    DiRocco M, Garibotto G, Rossi GA, Caruso U, Taccone A, Picco P, et al. Role of haematological, pulmonary and renal complications in the long-term prognosis of patients with lysinuric protein intolerance. Eur J Pediatr. 1993;152(5):437–40.PubMedGoogle Scholar
  216. 216.
    Parenti G, Sebastio G, Strisciuglio P, Incerti B, Pecoraro C, Terracciano L, et al. Lysinuric protein intolerance characterized by bone marrow abnormalities and severe clinical course. J Pediatr. 1995;126(2):246–51.PubMedGoogle Scholar
  217. 217.
    Benninga MA, Lilien M, de Koning TJ, Duran M, Versteegh FG, Goldschmeding R, et al. Renal Fanconi syndrome with ultrastructural defects in lysinuric protein intolerance. J Inherit Metab Dis. 2007;30(3):402–3.PubMedGoogle Scholar
  218. 218.
    Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Gatti R, et al. Impaired phagocytosis in macrophages from patients affected by lysinuric protein intolerance. Mol Genet Metab. 2012;105(4):585–9.PubMedGoogle Scholar
  219. 219.
    Mannucci L, Emma F, Markert M, Bachmann C, Boulat O, Carrozzo R, et al. Increased NO production in lysinuric protein intolerance. J Inherit Metab Dis. 2005;28(2):123–9.PubMedGoogle Scholar
  220. 220.
    Ogier de Baulny H, Schiff M, Dionisi-Vici C. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab. 2012;106(1):12–7.PubMedGoogle Scholar
  221. 221.
    Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Kadija Z, et al. In lysinuric protein intolerance system y + L activity is defective in monocytes and in GM-CSF-differentiated macrophages. Orphanet J Rare Dis. 2010;5:32.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francesco Emma
    • 1
  • William G. van’t Hoff
    • 2
  • Carlo Dionisi Vici
    • 3
  1. 1.Division of NephrologyBambino Gesù Children’s Hospital – IRCCSRomeItaly
  2. 2.Great Ormond Street HospitalLondonUK
  3. 3.Division of Metabolic Diseases, Bambino Gesù Children’s Hospital – IRCCSRomeItaly

Personalised recommendations