Advertisement

Sickle Cell Nephropathy in Children

  • Connie Piccone
  • Katherine MacRae Dell
Living reference work entry

Introduction

Sickle cell disease (SCD) is one of the most common genetic disorders in the United States, affecting 100,000 Americans and millions of people worldwide, primarily of African or Mediterranean descent [1]. SCD is inherited in an autosomal recessive fashion and is a group of hemoglobinopathies associated with chronic hemolytic anemia and vaso-occlusive complications. It is likely that sickle hemoglobin (HgbS) and other hemoglobin variants arose out of genetic selection due to the fact that being a carrier (heterozygote) for HgbS confers some resistance to malarial infection with a resultant survival advantage [2]. All forms of SCD are the result of mutations in the two β-globin genes. β-globin is a major component of adult hemoglobin and is part of a group of genes involved in oxygen transport. The most common form of SCD is homozygous SS disease. Other variants of SCD are the result of compound heterozygotes for HgbS and other β-globin variants, including SC as well as Sβ+...

Keywords

Chronic Kidney Disease Sickle Cell Disease Sickle Cell Trait Sickle Cell Disease Patient Glomerular Hyperfiltration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–6.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Ashley-Koch A, Yang Q, Olney RS. Sickle hemoglobin (HbS) allele and sickle cell disease: a HuGE review. Am J Epidemiol. 2000;151(9):839–45.PubMedGoogle Scholar
  3. 3.
    Mills ML. Life-threatening complications of sickle cell disease in children. JAMA. 1985;254(11):1487–91.PubMedGoogle Scholar
  4. 4.
    Schnog JB, Duits AJ, Muskiet FA, ten Cate H, Rojer RA, Brandjes DP. Sickle cell disease; a general overview. Neth J Med. 2004;62(10):364–74.PubMedGoogle Scholar
  5. 5.
    Sharpe CC, Thein SL. Sickle cell nephropathy - a practical approach. Br J Haematol. 2011;155(3):287–97.PubMedGoogle Scholar
  6. 6.
    Fabry ME, Costantini F, Pachnis A, Suzuka SM, Bank N, Aynedjian HS, et al. High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia. Proc Natl Acad Sci U S A. 1992;89(24):12155–9.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Morgan AG, Shah DJ, Williams W. Renal pathology in adults over 40 with sickle-cell disease. West Indian Med J. 1987;36(4):241–50.PubMedGoogle Scholar
  8. 8.
    de Jong PE, van Statius Eps LW. Sickle cell nephropathy: new insights into its pathophysiology. Kidney Int. 1985;27(5):711–7.PubMedGoogle Scholar
  9. 9.
    Schmitt F, Martinez F, Brillet G, Giatras I, Choukroun G, Girot R, et al. Early glomerular dysfunction in patients with sickle cell anemia. Am J Kidney Dis. 1998;32(2):208–14.PubMedGoogle Scholar
  10. 10.
    Wesson DE. The initiation and progression of sickle cell nephropathy. Kidney Int. 2002;61(6):2277–86.PubMedGoogle Scholar
  11. 11.
    de Jong PE, de Jong-Van Den Berg TW, Sewrajsingh GS, Schouten H, Donker AJ, van Statius Eps LW. The influence of indomethacin on renal haemodynamics in sickle cell anaemia. Clin Sci (London, England: 1979). 1980;59(4):245–50.Google Scholar
  12. 12.
    van Statius Eps LW, Schouten H, La Porte-Wijsman LW, Struyker Boudier AM. The influence of red blood cell transfusions on the hyposthenuria and renal hemodynamics of sickle cell anemia. Clin Chim Acta. 1967;17(3):449–61.Google Scholar
  13. 13.
    Nath KA, Grande JP, Haggard JJ, Croatt AJ, Katusic ZS, Solovey A, et al. Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am J Pathol. 2001;158(3):893–903.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Juncos JP, Grande JP, Murali N, Croatt AJ, Juncos LA, Hebbel RP, et al. Anomalous renal effects of tin protoporphyrin in a murine model of sickle cell disease. Am J Pathol. 2006;169(1):21–31.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Weber ML, Vang D, Velho PE, Gupta P, Crosson JT, Hebbel RP, et al. Morphine promotes renal pathology in sickle mice. Int J Nephrol Renovasc Dis. 2012;5:109–18.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol. 2014;51(6):905–15.PubMedGoogle Scholar
  17. 17.
    Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E, et al. Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol CJASN. 2010;5(5):756–61.PubMedGoogle Scholar
  18. 18.
    Hirschberg R. Glomerular hyperfiltration in sickle cell disease. Clin J Am Soc Nephrol CJASN. 2010;5(5):748–9.PubMedGoogle Scholar
  19. 19.
    Nath KA, Katusic ZS. Vasculature and kidney complications in sickle cell disease. J Am Soc Nephrol JASN. 2012;23(5):781–4.PubMedGoogle Scholar
  20. 20.
    Kaul DK. Sickle red cell adhesion: many issues and some answers. Transfusion Clin Biol. 2008;15(1–2):51–5.Google Scholar
  21. 21.
    van Statius Eps LW, Pinedo-Veels C, de Vries GH, de Koning J. Nature of concentrating defect in sickle-cell nephropathy. Microradioangiographic studies. Lancet. 1970;1(7644):450–2.Google Scholar
  22. 22.
    Kaul DK, Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest. 2000;106(3):411–20.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Bartolucci P, Brugnara C, Teixeira-Pinto A, Pissard S, Moradkhani K, Jouault H, et al. Erythrocyte density in sickle cell syndromes is associated with specific clinical manifestations and hemolysis. Blood. 2012;120(15):3136–41.PubMedGoogle Scholar
  24. 24.
    Day TG, Drasar ER, Fulford T, Sharpe CC, Thein SL. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica. 2012;97(2):201–5.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Gurkan S, Scarponi KJ, Hotchkiss H, Savage B, Drachtman R. Lactate dehydrogenase as a predictor of kidney involvement in patients with sickle cell anemia. Pediatr Nephrol (Berlin, Germany). 2010;25(10):2123–7.Google Scholar
  26. 26.
    Maier-Redelsperger M, Levy P, Lionnet F, Stankovic K, Haymann JP, Lefevre G, et al. Strong association between a new marker of hemolysis and glomerulopathy in sickle cell anemia. Blood Cells Mol Dis. 2010;45(4):289–92.PubMedGoogle Scholar
  27. 27.
    Asnani MR, Fraser RA, Reid ME. Higher rates of hemolysis are not associated with albuminuria in Jamaicans with sickle cell disease. PLoS One. 2011;6(4):e18863.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Ataga KI, Brittain JE, Moore D, Jones SK, Hulkower B, Strayhorn D, et al. Urinary albumin excretion is associated with pulmonary hypertension in sickle cell disease: potential role of soluble fms-like tyrosine kinase-1. Eur J Haematol. 2010;85(3):257–63.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Guasch A, Navarrete J, Nass K, Zayas CF. Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol JASN. 2006;17(8):2228–35.PubMedGoogle Scholar
  30. 30.
    Saraf SL, Zhang X, Kanias T, Lash JP, Molokie RE, Oza B, et al. Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br J Haematol. 2014;164(5):729–39.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Francis YF, Worthen HG. Hyposthenuria in sickle cell disease. J Natl Med Assoc. 1968;60(4):266–70.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ, et al. Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer. 2012;59(4):668–74.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Ware RE, Rees RC, Sarnaik SA, Iyer RV, Alvarez OA, Casella JF, et al. Renal function in infants with sickle cell anemia: baseline data from the BABY HUG trial. J Pediatr. 2010;156(1):66–70.e1.PubMedGoogle Scholar
  34. 34.
    Alhwiesh A. An update on sickle cell nephropathy. Saudi J Kidney Dis Transpl. 2014;25(2):249–65.PubMedGoogle Scholar
  35. 35.
    DeFronzo RA, Taufield PA, Black H, McPhedran P, Cooke CR. Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med. 1979;90(3):310–6.PubMedGoogle Scholar
  36. 36.
    Allon M. Renal abnormalities in sickle cell disease. Arch Intern Med. 1990;150(3):501–4.PubMedGoogle Scholar
  37. 37.
    Bakir AA, Hathiwala SC, Ainis H, Hryhorczuk DO, Rhee HL, Levy PS, et al. Prognosis of the nephrotic syndrome in sickle glomerulopathy. A retrospective study. Am J Nephrol. 1987;7(2):110–5.PubMedGoogle Scholar
  38. 38.
    Goossens JP, van Statius Eps LW, Schouten H, Giterson AL. Incomplete renal tubular acidosis in sickle cell disease. Clinica Chimica Acta Int J Clin Chem. 1972;41:149–56.Google Scholar
  39. 39.
    Kong HH, Alleyne GA. Studies on acid excretion in adults with sickle-cell anaemia. Clin Sci. 1971;41(6):505–18.PubMedGoogle Scholar
  40. 40.
    de Jong PE, de Jong-van den Berg LT, Schouten H, Donker AJ, van Statius Eps LW. The influence of indomethacin on renal acidification in normal subjects and in patients with sickle cell anemia. Clin Nephrol. 1983;19(5):259–64.PubMedGoogle Scholar
  41. 41.
    Maurel S, Stankovic Stojanovic K, Avellino V, Girshovich A, Letavernier E, Grateau G, et al. Prevalence and correlates of metabolic acidosis among patients with homozygous sickle cell disease. Clin J Am Soc Nephrol CJASN. 2014;9(4):648–53.PubMedGoogle Scholar
  42. 42.
    Ayyappan S, Drawz P, Nouraie M, Hildesheim ME, Zhang Y, Gordeuk VR, et al. Renal disease in sickle cell: clinically varied and associated with increased mortality. 2012 ASH (American Society of Hematology) Meeting; 9 Dec 2012; Atlanta.Google Scholar
  43. 43.
    Burry A, Cross R, Axelsen R. Analgesic nephropathy and the renal concentrating mechanism. Pathol Annu. 1977;12(Pt 2):1–31.PubMedGoogle Scholar
  44. 44.
    De Jong PE, de Jong-van Den Berg LT, van Statius Eps LW. The tubular reabsorption of phosphate in sickle-cell nephropathy. Clin Sci Mol Med. 1978;55(5):429–34.PubMedGoogle Scholar
  45. 45.
    Badr M, El Koumi MA, Ali YF, El-Morshedy S, Almonem NA, Hassan T, et al. Renal tubular dysfunction in children with sickle cell haemoglobinopathy. Nephrology (Carlton). 2013;18(4):299–303.Google Scholar
  46. 46.
    Aygun B, Mortier NA, Smeltzer MP, Shulkin BL, Hankins JS, Ware RE. Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am J Hematol. 2013;88(2):116–9.PubMedGoogle Scholar
  47. 47.
    Asnani MR, Lynch O, Reid ME. Determining glomerular filtration rate in homozygous sickle cell disease: utility of serum creatinine based estimating equations. PLoS One. 2013;8(7):e69922.PubMedCentralPubMedGoogle Scholar
  48. 48.
    McPherson Yee M, Jabbar SF, Osunkwo I, Clement L, Lane PA, Eckman JR, et al. Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol CJASN. 2011;6(11):2628–33.PubMedGoogle Scholar
  49. 49.
    Wigfall DR, Ware RE, Burchinal MR, Kinney TR, Foreman JW. Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr. 2000;136(6):749–53.PubMedGoogle Scholar
  50. 50.
    Dharnidharka VR, Dabbagh S, Atiyeh B, Simpson P, Sarnaik S. Prevalence of microalbuminuria in children with sickle cell disease. Pediatr Nephrol (Berlin, Germany). 1998;12(6):475–8.Google Scholar
  51. 51.
    Becton LJ, Kalpatthi RV, Rackoff E, Disco D, Orak JK, Jackson SM, et al. Prevalence and clinical correlates of microalbuminuria in children with sickle cell disease. Pediatr Nephrol (Berlin, Germany). 2010;25(8):1505–11.Google Scholar
  52. 52.
    Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.PubMedGoogle Scholar
  53. 53.
    Ataga KI, Orringer EP. Renal abnormalities in sickle cell disease. Am J Hematol. 2000;63(4):205–11.PubMedGoogle Scholar
  54. 54.
    Davenport A, Buscombe J. Sickle cell kidney. J Nephrol. 2008;21(2):253–5.PubMedGoogle Scholar
  55. 55.
    Foucan L, Bourhis V, Bangou J, Merault L, Etienne-Julan M, Salmi RL. A randomized trial of captopril for microalbuminuria in normotensive adults with sickle cell anemia. Am J Med. 1998;104(4):339–42.PubMedGoogle Scholar
  56. 56.
    Kelly CJ, Singer I. Acute renal failure in sickle-cell disease. Am J Kidney Dis. 1986;8(3):146–50.PubMedGoogle Scholar
  57. 57.
    Ajayi OI, Bwayo-Weaver S, Chirla S, Serlemitsos-Day M, Daniel M, Nouraie M, et al. Cobalamin status in sickle cell disease. Int J Lab Hematol. 2013;35(1):31–7.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Alvarez O, Lopez-Mitnik G, Zilleruelo G. Short-term follow-up of patients with sickle cell disease and albuminuria. Pediatr Blood Cancer. 2008;50(6):1236–9.PubMedGoogle Scholar
  59. 59.
    Bhathena DB, Sondheimer JH. The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. J Am Soc Nephrol JASN. 1991;1(11):1241–52.PubMedGoogle Scholar
  60. 60.
    Ramidi GB, Kurukumbi MK, Sealy PL. Collapsing glomerulopathy in sickle cell disease: a case report. J Med Case Rep. 2011;5:71.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Scheinman JI. Sickle cell disease and the kidney. Nat Clin Pract Nephrol. 2009;5(2):78–88.PubMedGoogle Scholar
  62. 62.
    Verani RR, Conley SB. Sickle cell glomerulopathy with focal segmental glomerulosclerosis. Child Nephrol Urol. 1991;11(4):206–8.PubMedGoogle Scholar
  63. 63.
    Vogler C, Wood E, Lane P, Ellis E, Cole B, Thorpe C. Microangiopathic glomerulopathy in children with sickle cell anemia. Pediatr Pathol Lab Med. 1996;16(2):275–84.PubMedGoogle Scholar
  64. 64.
    Maigne G, Ferlicot S, Galacteros F, Belenfant X, Ulinski T, Niaudet P, et al. Glomerular lesions in patients with sickle cell disease. Medicine. 2010;89(1):18–27.PubMedGoogle Scholar
  65. 65.
    Berman LB, Tublin I. The nephropathies of sickle-cell disease. AMA Arch Intern Med. 1959;103(4):602–6.PubMedGoogle Scholar
  66. 66.
    Chauhan PM, Kondlapoodi P, Natta CL. Pathology of sickle cell disorders. Pathol Annu. 1983;18(Pt 2):253–76.PubMedGoogle Scholar
  67. 67.
    Falk RJ, Scheinman J, Phillips G, Orringer E, Johnson A, Jennette JC. Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N Engl J Med. 1992;326(14):910–5.PubMedGoogle Scholar
  68. 68.
    Chehal A, Taher A, Shamseddine A. Sicklemia with multi-organ failure syndrome and thrombotic thrombocytopenic purpura. Hemoglobin. 2002;26(4):345–51.PubMedGoogle Scholar
  69. 69.
    Chinowsky MS. Thrombotic thrombocytopenic purpura associated with sickle cell-hemoglobin C disease. South Med J. 1994;87(11):1168–71.PubMedGoogle Scholar
  70. 70.
    Geigel EJ, Francis CW. Reversal of multiorgan system dysfunction in sickle cell disease with plasma exchange. Acta Anaesthesiol Scand. 1997;41(5):647–50.PubMedGoogle Scholar
  71. 71.
    Lee HE, Marder VJ, Logan LJ, Friedman S, Miller BJ. Life-threatening thrombotic thrombocytopenic purpura (TTP) in a patient with sickle cell-hemoglobin C disease. Ann Hematol. 2003;82(11):702–4.PubMedGoogle Scholar
  72. 72.
    Shelat SG. Thrombotic thrombocytopenic purpura and sickle cell crisis. Clin Appl Thromb Hemost. 2010;16(2):224–7.PubMedGoogle Scholar
  73. 73.
    Shome DK, Ramadorai P, Al-Ajmi A, Ali F, Malik N. Thrombotic microangiopathy in sickle cell disease crisis. Ann Hematol. 2013;92(4):509–15.PubMedGoogle Scholar
  74. 74.
    Pegelow CH, Colangelo L, Steinberg M, Wright EC, Smith J, Phillips G, et al. Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia. Am J Med. 1997;102(2):171–7.PubMedGoogle Scholar
  75. 75.
    Rodgers GP, Walker EC, Podgor MJ. Is “relative” hypertension a risk factor for vaso-occlusive complications in sickle cell disease? Am J Med Sci. 1993;305(3):150–6.PubMedGoogle Scholar
  76. 76.
    Thompson J, Reid M, Hambleton I, Serjeant GR. Albuminuria and renal function in homozygous sickle cell disease: observations from a cohort study. Arch Intern Med. 2007;167(7):701–8.PubMedGoogle Scholar
  77. 77.
    Aygun B, Mortier NA, Smeltzer MP, Hankins JS, Ware RE. Glomerular hyperfiltration and albuminuria in children with sickle cell anemia. Pediatr Nephrol (Berlin, Germany). 2011;26(8):1285–90.Google Scholar
  78. 78.
    Imuetinyan BA, Okoeguale MI, Egberue GO. Microalbuminuria in children with sickle cell anemia. Saudi J Kidney Dis Transpl. 2011;22(4):733–8.PubMedGoogle Scholar
  79. 79.
    Bodas P, Huang A, O’Riordan MA, Sedor JR, Dell KM. The prevalence of hypertension and abnormal kidney function in children with sickle cell disease -a cross sectional review. BMC Nephrol. 2013;14:237.PubMedCentralPubMedGoogle Scholar
  80. 80.
    DeBaun MR, Sarnaik SA, Rodeghier MJ, Minniti CP, Howard TH, Iyer RV, et al. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood. 2012;119(16):3684–90.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Holloman KL, Johnson CS, Haywood LJ. Electrocardiogram analysis in adult patients with sickle cell disease. J Natl Med Assoc. 1987;79(8):809–14.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Mabiala Babela JR, Loumingou R, Pemba-Loufoua A, Londjongo W, Nzingoula S, Senga P. Enuresis in children with sickle cell disease. Arch Pediatr. 2004;11(10):1168–72.PubMedGoogle Scholar
  83. 83.
    Field JJ, Austin PF, An P, Yan Y, DeBaun MR. Enuresis is a common and persistent problem among children and young adults with sickle cell anemia. Urology. 2008;72(1):81–4.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Vaamonde CA. Renal papillary necrosis in sickle cell hemoglobinopathies. Semin Nephrol. 1984;4(1):48–64.Google Scholar
  85. 85.
    McCall IW, Moule N, Desai P, Serjeant GR. Urographic findings in homozygous sickle cell disease. Radiology. 1978;126(1):99–104.PubMedGoogle Scholar
  86. 86.
    Jung DC, Kim SH, Jung SI, Hwang SI, Kim SH. Renal papillary necrosis: review and comparison of findings at multi-detector row CT and intravenous urography. Radiogr Rev Publ Radiol Soc N Am. 2006;26(6):1827–36.Google Scholar
  87. 87.
    Lang EK, Macchia RJ, Thomas R, Davis R, Ruiz-Deya G, Watson RA, et al. Multiphasic helical CT diagnosis of early medullary and papillary necrosis. J Endourol Endourol Soc. 2004;18(1):49–56.Google Scholar
  88. 88.
    Papadaki MG, Kattamis AC, Papadaki IG, Menegas DG, Georgakopoulou TP, Mavrommati-Metaxotou A, et al. Abdominal ultrasonographic findings in patients with sickle-cell anaemia and thalassaemia intermedia. Pediatr Radiol. 2003;33(8):515–21.PubMedGoogle Scholar
  89. 89.
    Shultz PK, Strife JL, Strife CF, McDaniel JD. Hyperechoic renal medullary pyramids in infants and children. Radiology. 1991;181(1):163–7.PubMedGoogle Scholar
  90. 90.
    Davis Jr CJ, Mostofi FK, Sesterhenn IA. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol. 1995;19(1):1–11.PubMedGoogle Scholar
  91. 91.
    Avery RA, Harris JE, Davis Jr CJ, Borgaonkar DS, Byrd JC, Weiss RB. Renal medullary carcinoma: clinical and therapeutic aspects of a newly described tumor. Cancer. 1996;78(1):128–32.PubMedGoogle Scholar
  92. 92.
    Shetty A, Matrana MR. Renal medullary carcinoma: a case report and brief review of the literature. Ochsner J. 2014;14(2):270–5.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Pickhardt PJ. Renal medullary carcinoma: an aggressive neoplasm in patients with sickle cell trait. Abdom Imaging. 1998;23(5):531–2.PubMedGoogle Scholar
  94. 94.
    Marsh A, Golden C, Hoppe C, Quirolo K, Vichinsky E. Renal medullary carcinoma in an adolescent with sickle cell anemia. Pediatr Blood Cancer. 2014;61(3):567.PubMedGoogle Scholar
  95. 95.
    Arlet JB, Ribeil JA, Chatellier G, Eladari D, De Seigneux S, Souberbielle JC, et al. Determination of the best method to estimate glomerular filtration rate from serum creatinine in adult patients with sickle cell disease: a prospective observational cohort study. BMC Nephrol. 2012;13:83.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Sherwood JB, Goldwasser E, Chilcote R, Carmichael LD, Nagel RL. Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood. 1986;67(1):46–9.PubMedGoogle Scholar
  97. 97.
    Morris J, Dunn D, Beckford M, Grandison Y, Mason K, Higgs D, et al. The haematology of homozygous sickle cell disease after the age of 40 years. Br J Haematol. 1991;77(3):382–5.PubMedGoogle Scholar
  98. 98.
    Figueroa TE, Benaim E, Griggs ST, Hvizdala EV. Enuresis in sickle cell disease. J Urol. 1995;153(6):1987–9.PubMedGoogle Scholar
  99. 99.
    Osegbe DN. Haematuria and sickle cell disease. A report of 12 cases and review of the literature. Trop Geogr Med. 1990;42(1):22–7.PubMedGoogle Scholar
  100. 100.
    Kaye JD, Smith EA, Kirsch AJ, Cerwinka WH, Elmore JM. Preliminary experience with epsilon aminocaproic acid for treatment of intractable upper tract hematuria in children with hematological disorders. J Urol. 2010;184(3):1152–7.PubMedGoogle Scholar
  101. 101.
    Manjunath G, Fozailoff A, Mitcheson D, Sarnak MJ. Epsilon-aminocaproic acid and renal complications: case report and review of the literature. Clin Nephrol. 2002;58(1):63–7.PubMedGoogle Scholar
  102. 102.
    Davis NF, McGuire BB, Lawlor L, O’Gorman P, O’Malley KJ, Fitzpatrick JM. Oral tranexamic acid as a novel treatment option for persistent haematuria in patients with sickle cell disease. Ann Hematol. 2010;89(11):1179–80.PubMedGoogle Scholar
  103. 103.
    Laurin LP, Nachman PH, Desai PC, Ataga KI, Derebail VK. Hydroxyurea is associated with lower prevalence of albuminuria in adults with sickle cell disease. Nephrol Dial Transpl. 2014;29(6):1211–8.Google Scholar
  104. 104.
    Silva Junior GB, Vieira AP, Couto Bem AX, Alves MP, Meneses GC, Martins AM, et al. Proteinuria in adults with sickle-cell disease: the role of hydroxycarbamide(hydroxyurea) as a protective agent. Int J Clin Pharm. 2014;36(4):766–70.PubMedGoogle Scholar
  105. 105.
    McKie KT, Hanevold CD, Hernandez C, Waller JL, Ortiz L, McKie KM. Prevalence, prevention, and treatment of microalbuminuria and proteinuria in children with sickle cell disease. J Pediatr Hematol Oncol. 2007;29(3):140–4.PubMedGoogle Scholar
  106. 106.
    Steinberg MH. Erythropoietin for anemia of renal failure in sickle cell disease. N Engl J Med. 1991;324(19):1369–70.PubMedGoogle Scholar
  107. 107.
    Al-Mueilo SH. Renal replacement therapy in end-stage sickle cell nephropathy: presentation of two cases and literature review. Saudi J Kidney Dis Transpl. 2005;16(1):72–7.PubMedGoogle Scholar
  108. 108.
    Zumrutdal A. Response of patients with sickle cell anaemia and end-stage renal disease to erythropoietin treatment. NDT Plus. 2010;3(3):328–30.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Allen A, Scoble J, Snowden S, Hambley H, Bellingham A. Hydroxyurea, sickle cell disease and renal transplantation. Nephron. 1997;75(1):106–7.PubMedGoogle Scholar
  110. 110.
    Audard V, Grimbert P, Kirsch M, Habibi MA, Lang P, Remy P, et al. Successful combined heart and kidney transplantation in a patient with sickle-cell anemia. J Heart Lung Transpl. 2006;25(8):993–6.Google Scholar
  111. 111.
    Brennan DC, Lippmann BJ, Shenoy S, Lowell JA, Howard TK, Flye MW. Living unrelated renal transplantation for sickle cell nephropathy. Transplantation. 1995;59(5):794–5.PubMedGoogle Scholar
  112. 112.
    Donnelly PK, Edmunds ME, O’Reilly K. Renal transplantation in sickle cell disease. Lancet. 1988;2(8604):229.PubMedGoogle Scholar
  113. 113.
    Gonzalez-Carrillo M, Rudge CJ, Parsons V, Bewick M, White JM. Renal transplantation in sickle cell disease. Clin Nephrol. 1982;18(4):209–10.PubMedGoogle Scholar
  114. 114.
    Montgomery R, Zibari G, Hill GS, Ratner LE. Renal transplantation in patients with sickle cell nephropathy. Transplantation. 1994;58(5):618–20.PubMedGoogle Scholar
  115. 115.
    Ojo AO, Govaerts TC, Schmouder RL, Leichtman AB, Leavey SF, Wolfe RA, et al. Renal transplantation in end-stage sickle cell nephropathy. Transplantation. 1999;67(2):291–5.PubMedGoogle Scholar
  116. 116.
    Warady BA, Sullivan EK. Renal transplantation in children with sickle cell disease: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transpl. 1998;2(2):130–3.Google Scholar
  117. 117.
    Bolarinwa RA, Akinlade KS, Kuti MA, Olawale OO, Akinola NO. Renal disease in adult Nigerians with sickle cell anemia: a report of prevalence, clinical features and risk factors. Saudi J Kidney Dis Transpl. 2012;23(1):171–5.PubMedGoogle Scholar
  118. 118.
    United States Renal Data System. 2014 Annual data report: an overview of the epidemiology of kidney disease in the United States. 2014.Google Scholar
  119. 119.
    Powars DR, Elliott-Mills DD, Chan L, Niland J, Hiti AL, Opas LM, et al. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med. 1991;115(8):614–20.PubMedGoogle Scholar
  120. 120.
    Gooch K, Culleton BF, Manns BJ, Zhang J, Alfonso H, Tonelli M, et al. NSAID use and progression of chronic kidney disease. Am J Med. 2007;120(3):280 e1–7.PubMedGoogle Scholar
  121. 121.
    Misurac JM, Knoderer CA, Leiser JD, Nailescu C, Wilson AC, Andreoli SP. Nonsteroidal anti-inflammatory drugs are an important cause of acute kidney injury in children. J Pediatr. 2013;162(6):1153-9, e1.Google Scholar
  122. 122.
    Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–44.PubMedGoogle Scholar
  123. 123.
    Ballas SK. Effect of alpha-globin genotype on the pathophysiology of sickle cell disease. Pediatr Pathol Mol Med. 2001;20(2):107–21.PubMedGoogle Scholar
  124. 124.
    Guasch A, Zayas CF, Eckman JR, Muralidharan K, Zhang W, Elsas LJ. Evidence that microdeletions in the alpha globin gene protect against the development of sickle cell glomerulopathy in humans. J Am Soc Nephrol JASN. 1999;10(5):1014–9.PubMedGoogle Scholar
  125. 125.
    Lamarre Y, Romana M, Lemonne N, Hardy-Dessources MD, Tarer V, Mougenel D, et al. Alpha thalassemia protects sickle cell anemia patients from macro-albuminuria through its effects on red blood cell rheological properties. Clin Hemorheol Microcirc. 2014;57(1):63–72.PubMedGoogle Scholar
  126. 126.
    Nebor D, Broquere C, Brudey K, Mougenel D, Tarer V, Connes P, et al. Alpha-thalassemia is associated with a decreased occurrence and a delayed age-at-onset of albuminuria in sickle cell anemia patients. Blood Cells Mol Dis. 2010;45(2):154–8.PubMedGoogle Scholar
  127. 127.
    Limou S, Nelson GW, Kopp JB, Winkler CA. APOL1 kidney risk alleles: population genetics and disease associations. Adv Chronic Kidney Dis. 2014;21(5):426–33.PubMedGoogle Scholar
  128. 128.
    Nolan VG, Ma Q, Cohen HT, Adewoye A, Rybicki AC, Baldwin C, et al. Estimated glomerular filtration rate in sickle cell anemia is associated with polymorphisms of bone morphogenetic protein receptor 1B. Am J Hematol. 2007;82(3):179–84.PubMedGoogle Scholar
  129. 129.
    Sebastiani P, Solovieff N, Hartley SW, Milton JN, Riva A, Dworkis DA, et al. Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study. Am J Hematol. 2010;85(1):29–35.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Nissenson AR, Port FK. Outcome of end-stage renal disease in patients with rare causes of renal failure. I. Inherited and metabolic disorders. Q J Med. 1989;73(271):1055–62.PubMedGoogle Scholar
  131. 131.
    Saxena AK, Panhotra BR, Al-Ghamdi AM. Should early renal transplantation be deemed necessary among patients with end-stage sickle cell nephropathy who are receiving hemodialytic therapy? Transplantation. 2004;77(6):955–6.PubMedGoogle Scholar
  132. 132.
    Chatterjee SN. National study on natural history of renal allografts in sickle cell disease or trait. Nephron. 1980;25(4):199–201.PubMedGoogle Scholar
  133. 133.
    Chatterjee SN. National study in natural history of renal allografts in sickle cell disease or trait: a second report. Transplant Proc. 1987;19(2 Suppl 2):33–5.PubMedGoogle Scholar
  134. 134.
    Bleyer AJ, Donaldson LA, McIntosh M, Adams PL. Relationship between underlying renal disease and renal transplantation outcome. Am J Kidney Dis. 2001;37(6):1152–61.PubMedGoogle Scholar
  135. 135.
    Abbott KC, Hypolite IO, Agodoa LY. Sickle cell nephropathy at end-stage renal disease in the United States: patient characteristics and survival. Clin Nephrol. 2002;58(1):9–15.PubMedGoogle Scholar
  136. 136.
    Okafor UH, Aneke E. Outcome and challenges of kidney transplant in patients with sickle cell disease. J Transpl [Internet]. 2013;2013:[614610 p.]. http://www.ncbi.nlm.nih.gov/pubmed/23691273.
  137. 137.
    Kiryluk K, Jadoon A, Gupta M, Radhakrishnan J. Sickle cell trait and gross hematuria. Kidney Int. 2007;71(7):706–10.PubMedGoogle Scholar
  138. 138.
    Oster JR, Lee SM, Lespier LE, Pellegrini EL, Vaamonde CA. Renal acidification in sickle cell trait. Arch Intern Med. 1976;136(1):30–5.PubMedGoogle Scholar
  139. 139.
    Oster JR, Lanier Jr DC, Vaamonde CA. Renal response to potassium loading in sickle cell trait. Arch Intern Med. 1980;140(4):534–6.PubMedGoogle Scholar
  140. 140.
    Hicks PJ, Langefeld CD, Lu L, Bleyer AJ, Divers J, Nachman PH, et al. Sickle cell trait is not independently associated with susceptibility to end-stage renal disease in African Americans. Kidney Int. 2011;80(12):1339–43.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Key NS, Derebail VK. Sickle-cell trait: novel clinical significance. Hematology Am Soc Hematol Educ Program. 2010;2010:418–22.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Naik RP, Derebail VK, Grams ME, Franceschini N, Auer PL, Peloso GM, et al. Association of sickle cell trait with chronic kidney disease and albuminuria in African Americans. JAMA. 2014;312:2115–25.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Kim L, Garfinkel MR, Chang A, Kadambi PV, Meehan SM. Intragraft vascular occlusive sickle crisis with early renal allograft loss in occult sickle cell trait. Human Path. 2011;42:1027–33.Google Scholar
  144. 144.
    O’Rourke EJ, Laing CM, Khan AU, et al. The case. Allograft dysfunction in a patient with sickle cell disease. Kidney Int. 2008;74:1219–20.PubMedGoogle Scholar
  145. 145.
    Miner DJ, Jorkasky DK, Perloff LJ, Grossman RA, Tomaszewski JE. Recurrent sickle cell nephropathy in a transplanted kidney. Am J Kidney Dis. 1987;10:306–13.PubMedGoogle Scholar
  146. 146.
    Barber WH, Deierhol MH, Julian BA. Renal transplantation in sickle cell anaemia and sickle cell trait. Clin Transplant. 1987;1:169–75.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Pediatric Nephrology, Department of PediatricsCleveland Clinic Children’s and Case Western Reserve UniversityClevelandUSA
  2. 2.Rainbow Babies and Children’s HospitalClevelandUSA

Personalised recommendations