Advertisement

Pediatric Fanconi Syndrome

  • Takashi Igarashi
Living reference work entry

Abstract

Fanconi syndrome (FS) is a generalized dysfunction of the renal proximal tubules leading to excessive urinary wasting of amino acids, glucose, phosphate, uric acid, bicarbonate, and other solutes. The patients develop failure to thrive, polyuria, polydipsia, dehydration, and rickets in children, and osteoporosis and osteomalacia in adults. The patients also manifest renal salt wasting, hypokalemia, metabolic acidosis, hypercalciuria, and low-molecular-weight (LMW) proteinuria.

De Toni, Debré, and Fanconi described children with renal rickets and glucosuria in the 1930s (De Toni, Acta Paediatr. 16:479–84, 1933; Debré et al., Arch Med Enf. 37:597–606, 1934; Fanconi, Jahrb Kinderheilkd. 133:257–300, 1931). FS is named after Guido Fanconi, a Swiss pediatrician, or is alternatively called “De Toni-Debré-Fanconi” syndrome.

Keywords

Proximal Tubule Cell Dent Disease Fanconi Syndrome Glycogen Storage Disease Type Distal Renal Tubular Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Marshansky V, Bourgoin S, Londino I, et al. Receptor-mediated endocytosis in kidney proximal tubules; recent advances and hypothesis. Electrophoresis. 1997;18:2661–76.PubMedGoogle Scholar
  2. 2.
    Veroust PJ, Birn H, Nielsen R, et al. The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. Kidney Int. 2002;62:745–56.Google Scholar
  3. 3.
    Brown D, Stow JL. Protein trafficking and polarity in kidney epithelium; from cell biology to physiology. Physiol Rev. 1996;76:245–97.PubMedGoogle Scholar
  4. 4.
    Gitte Albinus P, Souvik C, Amie LS, et al. AMN directs endocytosis of the intrinsic factor-vitamin B(12) receptor cubam by engaging ARH or Dab2. Traffic. 2010;11:706–20.Google Scholar
  5. 5.
    Coudroy G, Gburek J, Kozyraki R, et al. Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-aminonless complex. J Am Soc Nephrol. 2005;16:2330–7.PubMedGoogle Scholar
  6. 6.
    Devuyst O, Pirson Y. Genetics of hypercalciuric stone forming disease. Kidney Int. 2007;72:1065–92.PubMedGoogle Scholar
  7. 7.
    Herak-Kramberger CM, Stow JL. Protein trafficking and polarity in kidney vacuolar H+-ATPase and endocytosis in rat cortex. Kidney Int. 1998;53:1713–26.PubMedGoogle Scholar
  8. 8.
    Marshansky V, Richard M, Bartle J, et al. Regulation of renal albumin reabsorption by endosomal proton transport. J Am Soc Nephrol. 1996;7:1311.Google Scholar
  9. 9.
    Lloyd SE, Pearce SH, Fisher SE, et al. A common molecular basis for three inherited kidney stone diseases. Nature. 1996;379:3445–9.Google Scholar
  10. 10.
    Norden AGW, Lapsley M, Igarashi T, et al. Urinary megalin deficiency implicates abnormal tubular endocytotic function in Fanconi syndrome. J Am Soc Nephrol. 2002;13:123–33.Google Scholar
  11. 11.
    Niaudet P, Rötig A. The kidney in mitochondrial cytopathies. Kidney Int. 1997;51:1000–7.PubMedGoogle Scholar
  12. 12.
    Hawkins E, Brewer E. Renal toxicity induced by valproic acid (Depakene). Pediatr Pathol. 1993;13:863–8.PubMedGoogle Scholar
  13. 13.
    Magen D, Sprecher E, Zelikovic I, et al. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int. 2005;67:34–41.PubMedGoogle Scholar
  14. 14.
    Bingham C, Ellard S, Cheret C, et al. The generalized aminoaciduria seen in patients with hepatocyte nuclear factor-1 alpha mutation is a feature of all patients with diabetes and is associated with glucosuria. Diabetes. 2001;50:2047–52.PubMedGoogle Scholar
  15. 15.
    Tokaymat A, Sakarcan A, Neiberger R. Idiopathic Fanconi syndrome in a family. I. Clinical aspects. J Am Soc Nephrol. 1992;2:1310–7.Google Scholar
  16. 16.
    Haffner D, Weinfurth A, Seidel C, et al. Body growth in primary de Toni-Debré-Fanconi syndrome. Pediatr Nephrol. 1997;11:40–5.PubMedGoogle Scholar
  17. 17.
    Flyvbjerg A, Dørup I, Everts ME, et al. Evidence that potassium deficiency induces growth retardation through reduced circulating levels of growth hormone and insulin-like growth factor I. Metabolism. 1991;40:769–75.PubMedGoogle Scholar
  18. 18.
    Tsao T, Fawcett J, Fervenzas FC, et al. Expression of insulin-like growth factor-I and transforming growth factor-beta in hypokalemic nephropathy in the rat. Kidney Int. 2001;59:96–105.PubMedGoogle Scholar
  19. 19.
    Brünger M, Hutler HN, Krapf R. Effect of chronic metabolic acidosis on the growth hormone/IGF-I endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int. 1997;51:216–21.Google Scholar
  20. 20.
    Hsu SY, Tsai IJ, Tsau YK. Comparison of growth in primary Fanconi syndrome and proximal renal tubular acidosis. Pediatr Nephrol. 2005;20:460–4.PubMedGoogle Scholar
  21. 21.
    Tsilchorozidou T, Yovos JG. Hypophosphataemic osteomalacia due to de Toni-Debré-Fanconi syndrome in a 42-year old girl. Hormones (Athens). 2005;4:171–6.Google Scholar
  22. 22.
    Urabe Y, Tagami T, Suwabe T, et al. A patient with symptomatic osteomalacia associated with Fanconi syndrome. Mod Rheumatol. 2005;15:207–12.Google Scholar
  23. 23.
    Morisaki I, Abe K, Sobue S. Orofacial manifestations in a child with Fanconi’s syndrome. Oral Surg Oral Med Oral Pathol. 1989;68:171–4.PubMedGoogle Scholar
  24. 24.
    Armando N. Proximal tubule endocytic apparatus as the specific renal uptake mechanism for vitamin D binding protein/25-(OH) D3 complex. Nephrology. 2006;11:510–5.Google Scholar
  25. 25.
    Gahl WA. Cysitinosis coming of age. Adv Pediatr. 1986;33:95–126.PubMedGoogle Scholar
  26. 26.
    De Toni G. Remarks on the relations between renal and rickets (renal dwarfism) and renal diabetes. Acta Paediatr. 1933;16:479–84.Google Scholar
  27. 27.
    Debré R, Marie J, Cléret F, et al. Rachitisme tradif coexistànt avec une nephrite chronique et une glycosurie. Arch Med Enf. 1934;37:597–606.Google Scholar
  28. 28.
    Fanconi G. Die nichit diabeteishen glykosurien und hyperglykamien des altern Kinds. Jahrb Kinderheilkd. 1931;133:257–300.Google Scholar
  29. 29.
    Deshpande P, Ali U. Primary Fanconi syndrome. Ind Pediatr. 1997;34:547–9.Google Scholar
  30. 30.
    Brewer ED, Tsai HC, Norris RC. Evidence for impairment of metabolism of 25-hydroxyvitamin D3, in children with Fanconi syndrome. Clin Res. 1976;24:154A.Google Scholar
  31. 31.
    Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutation. Kidney Int. 1998;53:2–17.Google Scholar
  32. 32.
    Levinson DJ, Sorensen LB. Renal handling of uric acid in normal and gouty subject: evidence for a 4-component system. Ann Rheum Dis. 1980;39:173–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Meisel AD, Diamond HS. Hyperuricosuria in the Fanconi syndrome. Am J Med Sci. 1977;273:109–15.PubMedGoogle Scholar
  34. 34.
    Roch-Ramel F, Guisan B, Diezi J. Effects of uricosuric and antiuricosuric agents on urate transport in human brush-border membrane vesicles. J Pharmacol Exp Ther. 1997;280:839–45.PubMedGoogle Scholar
  35. 35.
    Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.PubMedGoogle Scholar
  36. 36.
    Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83:744–51.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Dinour D, Gray NK, Ganon L, et al. Two novel homozygous SLC2A9 mutations cause renal hypouricemia 2. J Am Soc Nephrol. 2012;27:1035–41.Google Scholar
  38. 38.
    Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18:430–9.PubMedGoogle Scholar
  39. 39.
    Bahn A, Hagos Y, Reuter S, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008;283:16332–41.PubMedGoogle Scholar
  40. 40.
    Viart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.Google Scholar
  41. 41.
    Ohta T, Sakano T, Igarashi T, et al. Exercise-induced acute renal failure associated with renal hypouricemia: results of a questionnaire-based survey in Japan. Nephrol Dial Transplant. 2004;19:1447–53.PubMedGoogle Scholar
  42. 42.
    Maack T. Renal handling of proteins and polypeptides. In: Windhager EE, editor. Handbook of physiology. Renal physiology. New York: Oxford University Press; 1992. p. 2039–82.Google Scholar
  43. 43.
    Norden AGW, Sharratt P, Cutillas PR, et al. Quantitative amino acid and proteomic analysis: very low excretion of polypeptides >750 Da in normal urine. Kidney Int. 2004;66:1994–2003.PubMedGoogle Scholar
  44. 44.
    Birn H, Fyfe JC, Jacobsen C, et al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest. 2000;105:1353–61.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int. 2006;69:440–9.PubMedGoogle Scholar
  46. 46.
    Dent CE, Friedman M. Hypercalciuric rickets associated with renal tubular change. Arch Dis Child. 1964;39:240–9.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wrong OM, Norden AG, Freest TG, et al. Dent’s disease; a familial renal tubular syndrome with low-molecular weight proteinuria, hypercalciuria, nephroclcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM. 1994;87:473–93.PubMedGoogle Scholar
  48. 48.
    Hodgin JB, Corey HE, Kaplan BS, et al. Dent disease presenting as partial Fanconi syndrome and hypercalciuria. Kidney Int. 2008;73:1320–3.PubMedGoogle Scholar
  49. 49.
    Sekine T, Komoda F, Miura K, et al. Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe/USA: genetic and clinical studies of 86 unrelated patients with low-molecular-weight proteinuria. Nephrol Dial Transplant. 2014;29:376–84.PubMedGoogle Scholar
  50. 50.
    Suzuki Y, Okada T, Higuchi A, et al. The low molecular weight of protein components in children urine. Acta Paediatr Jpn. 1980;22:1–5.Google Scholar
  51. 51.
    Igarashi T, Hayakawa H, Shiraga H, et al. Hypercalciuria and nephrocalcinosis in patients with idiopathic low-molecular-weight proteinuria in Japan: is the disease identical to Dent’s disease in United Kingdom? Nephron. 1995;69:242–7.PubMedGoogle Scholar
  52. 52.
    Lloyd SE, Pearce SHS, Gunter H, et al. Idiopathic low molecular weight proteinuria associated with hypercalciuria, nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5). J Clin Invest. 1997;99:967–74.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Akuta N, Lloyd SE, Igarashi T, et al. Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis. Kidney Int. 1997;52:911–6.PubMedGoogle Scholar
  54. 54.
    Igarashi T, Inatomi J, Ohara T, et al. Clinical and genetic studies of CLCN5 mutations in Japanese families with Dent’s disease. Kidney Int. 2000;58:520–7.PubMedGoogle Scholar
  55. 55.
    Jentsch TJ, Poet M, Furhmann JK, et al. Physiological functions of ClC Cl channels gleaned from human genetic disease and mouse models. Annu Rev Physiol. 2005;67:779–807.PubMedGoogle Scholar
  56. 56.
    Moulin P, Igarashi T, van der Smissen P, et al. Altered polarity and expression of H+-ATPase without ultrastructural changes in kidneys of Dent’s disease patients. Kidney Int. 2003;63:1285–95.PubMedGoogle Scholar
  57. 57.
    Frymoyer SC, Scheinman SJ, Dunham PB, et al. X-linked recessive nephrolithiasis with renal failure. N Engl J Med. 1991;325:681–6.PubMedGoogle Scholar
  58. 58.
    Norden AGW, Scheinman SJ, Deschodt-Lanckman MM, et al. Tubular proteinuria defined by a study of Dent’s (CLCN5 mutation) and other tubular diseases. Kidney Int. 2000;57:240–9.PubMedGoogle Scholar
  59. 59.
    Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 1998;53:3–17.PubMedGoogle Scholar
  60. 60.
    Ludwig M, Utsch B, Balluch B, et al. Hypercalciuria in patients with CLCN5 mutations. Pediatr Nephrol. 2006;21:1241–50.PubMedGoogle Scholar
  61. 61.
    Carr G, Simmons NL, Sayer JA, et al. Disruption of clc-5 leads to redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells. Cell Mol Life Sci. 2006;63:367–77.PubMedGoogle Scholar
  62. 62.
    Norden AGW, Lapsley M, Lee PJ, et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 2001;60:1885–92.PubMedGoogle Scholar
  63. 63.
    Hoopes Jr RR, Raja KM, Koich A, et al. Evidence for genetic heterogeneity in Dent’s disease. Kidney Int. 2004;65:1615–20.PubMedGoogle Scholar
  64. 64.
    Raja KA, Schurman S, D’Mello RG, et al. Responsiveness of hypercalciuria to thiazide in Dent’s disease. J Am Soc Nephrol. 2002;13:2938–44.PubMedGoogle Scholar
  65. 65.
    Cebotaru V, Kaul S, Devuyst O, et al. High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int. 2005;68:642–52.PubMedGoogle Scholar
  66. 66.
    Guggino SE. Mechanism of disease: what can mouse models tell us about the molecular process underlying Dent disease? Nat Clin Pract Nephrol. 2007;3:449–55.PubMedGoogle Scholar
  67. 67.
    Copelvitch L, Nash MA, Kaplan BS. Hypothesis: Dent disease is an under recognized cause of focal glomerulosclerosis. Clin J Am Soc Nephrol. 2007;2:914–8.Google Scholar
  68. 68.
    Lowe CU, Terrey M, MacLachlan EA. Organic aciduria, decreased renal ammonia production, hydrophthalmos and mental retardation: a clinical entity. Am J Dis Child. 1952;83:164–84.Google Scholar
  69. 69.
    Lin T, Lewis RA, Nussbaum RI. Molecular confirmation of carriers of Lowe syndrome. Ophthalmology. 1999;106:119–22.PubMedGoogle Scholar
  70. 70.
    Charnas LR, Bernardini I, Rader D, et al. Clinical and laboratory findings in the oculocerebrorenal syndrome of Lowe, with special reference to growth and renal function. N Engl J Med. 1991;324:1318–25.PubMedGoogle Scholar
  71. 71.
    Laube G, Russel-Egitt I, van’t Hoff W. Early proximal tubular dysfunction in Lowe’s syndrome. Arch Dis Child. 2004;89:479–80.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Attree O, Olivos IM, Okabe I, et al. The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature. 1992;358:239–42.PubMedGoogle Scholar
  73. 73.
    Zhang X, Jefferson AB, Auethavekiat V, et al. The protein deficient in Lowe syndrome is a phosphatidylinositol 4,5-bisphosphate 5-Phosphatase. Proc Natl Acad Sci U S A. 1995;92:4853–6.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lin T, Orrison BM, Leahey AM, et al. Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am J Hum Genet. 1997;60:1384–8.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang X, Hartz PA, Philip E, et al. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lacks OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1998;273:1574–82.PubMedGoogle Scholar
  76. 76.
    Suchy SF, Nussbaum RL. The deficiency of PIP2 5-phosphatased in Lowe syndrome affects actin polymerization. Am J Hum Genet. 2002;71:1420–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Ungewickell A, Ward M, Ungewickell E, et al. The inositol polyphosphate 5-phosphatase Ocrl associates with endosome that are partially coated with clathrin. Proc Natl Acad Sci U S A. 2004;101:13501–6.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Lowe M. Structure and function of Lowe syndrome protein. Traffic. 2005;6:711–9.PubMedGoogle Scholar
  79. 79.
    Erdmann KS, Mao Y, McCrea HJ, et al. A role of Lowe syndrome protein OCRL in early steps of the endocytotic pathway. Dev Cell. 2007;13:377–90.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Faucherre A, Desbois P, Satre V, et al. Lowe syndrome protein OCRL interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet. 2003;12:2449–56.PubMedGoogle Scholar
  81. 81.
    Bockenhauer D, Bokenkamp A, van’t Hoff W, et al. Renal phenotype in Lowe syndrome: a selective proximal tubular dysfunction. Clin J Am Soc Nephrol. 2008;3:1430–6.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Velibor T, Vladimir JL, Peter K, et al. Clinical and laboratory features of Macedonian children with OCRL mutations. Pediatr Nephrol. 2011;26:557–62.Google Scholar
  83. 83.
    Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–69.PubMedGoogle Scholar
  84. 84.
    Clayton DA. Structure and function of the mitochondrial genome. J Inherit Metab Dis. 1992;15:439–47.PubMedGoogle Scholar
  85. 85.
    DiMauro S, Bonilla E, Lombes A, et al. Mitochondrial encephalomyopathies. Neurol Clin. 1990;8:483–506.PubMedGoogle Scholar
  86. 86.
    Niaudet P. Mitochondrial disorders and the kidney. Arch Dis Child. 1998;78:387–90.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Ueda Y, Ando A, Nagata T, et al. A boy with mitochondrial disease: asymptomatic proteinuria without neuromyopathy. Pediatr Nephrol. 2004;19:107–10.PubMedGoogle Scholar
  88. 88.
    Morris AA, Taylor RW, Birchi-Marchin MA, et al. Neonatal Fanconi syndrome due to deficiency of complex III of the respiratory chain. Pediatr Nephrol. 1995;9:407–11.PubMedGoogle Scholar
  89. 89.
    Kuwertz-Broking E, Koch HG, Marquardt T, et al. Renal Fanconi syndrome: first sign of partial respiratory chain complex IV deficiency. Pediatr Nephrol. 2000;14:495–8.PubMedGoogle Scholar
  90. 90.
    Au KM, Lau SC, Mak YF, et al. Mitochondrial DNA deletion in a girl with Fanconi syndrome. Pediatr Nephrol. 2007;22:136–40.PubMedGoogle Scholar
  91. 91.
    Tzen CY, Tsai JD, Wu TY, et al. Tubulointerstitial nephritis associated with a novel mitochondrial point mutation. Kidney Int. 2001;59:846–54.PubMedGoogle Scholar
  92. 92.
    Szabolcs MJ, Seigle R, Shanske S, et al. Mitochondrial DNA deletion: a cause of chronic tubulointerstitial nephropathy. Kidney Int. 1994;45:1388–96.PubMedGoogle Scholar
  93. 93.
    Mochizuki H, Joh K, Kawame H, et al. Mitochondrial encephalomyopathies preceded by de Toni-Debré-Fanconi syndrome or focal segmental glomerulosclerosis. Clin Nephrol. 1996;46:347–52.PubMedGoogle Scholar
  94. 94.
    Gucer S, Talim B, Asan E, et al. Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: report of two cases with special emphasis on podocytes. Pediatr Dev Pathol. 2005;8:710–7.PubMedGoogle Scholar
  95. 95.
    Hotta O, Inoue CN, Miyabayashi S, et al. Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation. Kidney Int. 2001;59:1236–43.PubMedGoogle Scholar
  96. 96.
    Barisoni L, Diomedi-Camassei F, Santorelli FM, et al. Collapsing glomerulopathy associated with inherited mitochondrial injury. Kidney Int. 2008;74:237–43.PubMedGoogle Scholar
  97. 97.
    Lopez LC, Schuelke M, Quinzii CM, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79:1125–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Niaudet P, Heidet L, Munnich A, et al. Deletion of the mitochondrial DNA in a case of de Toni-Debré-Fanconi syndrome and Pearson syndrome. Pediatr Nephrol. 1994;8:164–8.PubMedGoogle Scholar
  99. 99.
    Zaffanello M, Zamboni G. Therapeutic approach in a case of Pearson’s syndrome. Minerva Pediatr. 2005;57:143–6.PubMedGoogle Scholar
  100. 100.
    Ezgu F, Senaca S, Gunduz M, et al. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course. Gene. 2013;528:364–6.PubMedGoogle Scholar
  101. 101.
    Matsutani H, Mizusawa Y, Shimoda M, et al. Partial deficiency of cytochrome c oxidase with isolated proximal renal tubular acidosis and hypercalciuria. Clin Nephrol Urol. 1992;12:221–4.Google Scholar
  102. 102.
    Goto Y, Itami N, Kajii N, et al. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearn-Sayre syndrome. J Pediatr. 1990;116:904–10.PubMedGoogle Scholar
  103. 103.
    Moraes CT, Shanske S, Trischler HJ, et al. Mitochondrial DNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial disease. Am J Hum Genet. 1991;48:492–501.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Gilber RD, Emms M. Pearson’s syndrome presenting with Fanconi syndrome. Ultrastruct Pathol. 1996;20:473–5.Google Scholar
  105. 105.
    van’t Hoff WG, Ledermann SE, Waldron M, et al. Early-onset chronic renal failure as a presentation of infantile nephropathy cystinosis. Pediatr Nephrol. 1995;9:483–4.Google Scholar
  106. 106.
    Pennesi M, Marchetti F, Crovella S, et al. A new mutation in two siblings with cystionosis presenting with Bartter syndrome. Pediatr Nephrol. 2005;20:217–9.PubMedGoogle Scholar
  107. 107.
    Yildiz B, Durmus-Aydogdu S, Kural N, et al. A patient with cystinosis presenting transient features of Bartter syndrome. Turk J Pediatr. 2006;48:260–2.PubMedGoogle Scholar
  108. 108.
    Theodoropolos DS, Shawker TH, Heinrichs C, et al. Medullary nephrocalcinosis in nephropathic cystinosis. Pediatr Nephrol. 1995;9:412–8.Google Scholar
  109. 109.
    Gubler MC, Lacoste M, Sich M, et al. The pathology of the kidney in cystinosis. Paris: Elsevier; 1999.Google Scholar
  110. 110.
    Town M, Jean G, Cherqui S, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet. 1998;18:319–24.PubMedGoogle Scholar
  111. 111.
    Raggi C, Luciani A, Nevo N, et al. Differentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis. Hum Mol Genet. 2014;23:2266–78.PubMedGoogle Scholar
  112. 112.
    Gahl WA, Thoene JG, Schneidel JA. Cystinosis. N Engl J Med. 2003;347:111–21.Google Scholar
  113. 113.
    Leslie ND. Insights into pathogenesis of galactosemia. Annu Rev Nutr. 2003;23:59–80.PubMedGoogle Scholar
  114. 114.
    Tyfield L, Reichardt J, Fridovich-Keil J, et al. Classical galactosemia and mutation at the galactose-1-uridyl transferase (GALT) gene. Hum Mutat. 1999;13:417–30.PubMedGoogle Scholar
  115. 115.
    Waggoner DD, Buist NRM, Donnel GN, et al. Long-term prognosis in galactosemia: results in a survey of 350 cases. J Inherit Metab Dis. 1990;13:802–18.PubMedGoogle Scholar
  116. 116.
    Lai KW, Cheng LY, Choung AL, et al. Inhibitor of apoptosis proteins and ovarian dysfunction in galactosemic rats. Cell Tissue Res. 2003;311:417–25.PubMedGoogle Scholar
  117. 117.
    Chung MA. Galactosemia in infancy: diagnosis, management, and prognosis. Pediatr Nurs. 1997;23:563–9.PubMedGoogle Scholar
  118. 118.
    Berry GT, Palmieri M, Gross KC, et al. The effect of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyltransferase deficiency. J Inherit Metab Dis. 1993;16:91–100.PubMedGoogle Scholar
  119. 119.
    Berry GT, Mate PJ, Reynold RA. The rate of de novo galactose synthesis in patients with galactose-1-phosphate uridyltransferase deficiency. Mol Genet Metab. 2004;81:22–30.PubMedGoogle Scholar
  120. 120.
    Berry GT, Nissim I, Lin Z, et al. Endogenous synthesis of galactose in normal men and patients with hereditary galactosemia. Lancet. 1995;346:1073–4.PubMedGoogle Scholar
  121. 121.
    Gitzelmann R, Wells HJ, Segal S. Galactose metabolism in a patient with hereditary galactokinase deficiency. Eur J Clin Invest. 1974;4:79–84.PubMedGoogle Scholar
  122. 122.
    Waggoner DD, Buist NRM. Long-term complications in treated galactsemia-175 US cases. Int Pediatr. 1993;8:97–199.Google Scholar
  123. 123.
    Ascota PB, Gross KC. Hidden sources of galactose in the environment. Eur J Pediatr. 1995;154:S87–92.Google Scholar
  124. 124.
    Gitzelmann R. Additional findings in galactokinase deficiency. J Pediatr. 1975;87:1007–8.PubMedGoogle Scholar
  125. 125.
    Slepak TI, Tang M, Slepak VZ, et al. Involvement of endoplasmic reticulum stress in a novel classic galactosemia model. Mol Genet Metab. 2007;92:78–87.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Ali M, Rellos P, Cox TM. Hereditary fructose intolerance. J Med Genet. 1998;35:353–65.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Rottmann WH, Tolan DR, Penhoet EE. Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci U S A. 1984;81:2738–42.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Mukai T, Yatsuki H, Joh K, et al. Human aldolase b gene: characterization of the genomic aldolase B gene and analysis of sequences required for multiple polyadenylations. J Biochem. 1987;102:1043–51.PubMedGoogle Scholar
  129. 129.
    Esposito G, Vitagliano L, Santamaria R, et al. Structural and functional analysis of aldolase B mutants related to hereditary fructose intolerance. FEBS Lett. 2002;531:152–6.PubMedGoogle Scholar
  130. 130.
    Cross NC, Cox TM. Hereditary fructose intolerance. Int J Biochem. 1990;22:685–9.PubMedGoogle Scholar
  131. 131.
    Morris Jr RC. An experimental renal acidification defect in patients with hereditary fructose intolerance: I. Its resemblance to renal tubular acidosis. J Clin Invest. 1967;47:1389–98.Google Scholar
  132. 132.
    Morris Jr RC. An experimental renal acidification defect in patients with hereditary fructose intolerance: II. Its distinction from classic renal acidosis and its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis. J Clin Invest. 1968;47:1648–63.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Richardson RMA, Little JA, Pattern RL, et al. Pathogenesis of acidosis in hereditary fructose intolerance. Metabolism. 1979;28:1133–8.PubMedGoogle Scholar
  134. 134.
    Levin B, Snodgrass GLAI, Oberholzer VG, et al. Fructosemia. Observations in seven cases. Am J Med. 1968;45:826–38.PubMedGoogle Scholar
  135. 135.
    Lu M, Holliday LS, Zhang L, et al. Interaction between aldolase and vacuolar H+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J Biol Chem. 2001;276:30407–13.PubMedGoogle Scholar
  136. 136.
    Steinmann B, Gitzelmann R. The diagnosis of hereditary fructose intolerance. Helv Paediatr Acta. 1981;36:297–316.PubMedGoogle Scholar
  137. 137.
    Müller P, Meier C, Böhme HJ, et al. Fructose breath hydrogen test- is it really a harmless diagnostic procedure? Dig Dis. 2003;21:276–8.PubMedGoogle Scholar
  138. 138.
    Chou JY, Matern D, Mansfield BC, et al. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med. 2002;2:121–43.PubMedGoogle Scholar
  139. 139.
    von Gierke E. Hepato-nephro-megalia glycogenica (Glykogenespecicher-krankheit der Lber und Nieren). Beitr Pathol Anat. 1929;82:497–513.Google Scholar
  140. 140.
    Kim SY, Vhen LY, Yiu WH, et al. Neutrophilia and elevated serum cytokines are implicated in glycogen storage disease type Ia. FEBS Lett. 2007;581:3833–8.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Di R, Calevo MG, Taro’s M, et al. Hepatocellular adenoma and metabolic balance in patients with type Ia glycogen storage disease. Mol Genet Metab. 2008;93:398–401.Google Scholar
  142. 142.
    Reddy SK, Kishnani PS, Sullivan JA, et al. Resection of hepatocellular adenoma in patients with glycogen storage disease type Ia. J Hepatol. 2007;47:658–63.PubMedGoogle Scholar
  143. 143.
    Reitsma-Bierens WCC. Renal complications in glycogen storage disease type I. Eur J Pediatr. 1993;152:S60–2.PubMedGoogle Scholar
  144. 144.
    Hers HG, van Hoof F, de Barsy T. Glycogen storage disease. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill; 1989. p. 425–37.Google Scholar
  145. 145.
    Matsuo N, Tsuchiya M, Cho H, et al. Proximal renal tubular acidosis in a child with type I glycogen storage disease. Acta Pediatr Scand. 1986;75:332–5.Google Scholar
  146. 146.
    Chen YT, Scheinman JI, Park HK, et al. Amelioration of proximal renal tubular dysfunction in type I glycogen storage disease with dietary therapy. N Engl J Med. 1990;323:590–3.PubMedGoogle Scholar
  147. 147.
    Chen YT, Coleman RA, Scheinman JI, et al. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318:7–11.PubMedGoogle Scholar
  148. 148.
    Verani R, Bernstein J. Renal glomerular and tubular abnormalities in glycogen storage disease type I. Arch Pathol Lab Med. 1988;112:271–4.PubMedGoogle Scholar
  149. 149.
    Baker L, Dahlem S, Goldfarb S, et al. Hyperfiltration and renal disease in glycogen storage disease. Kidney Int. 1989;35:1345–50.PubMedGoogle Scholar
  150. 150.
    Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in type 1a glycogen storage disease. J Pediatr. 2001;138:378–82.PubMedGoogle Scholar
  151. 151.
    Rake JP, Visser G, Labrune P, et al. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr. 2002;161:S20–34.PubMedGoogle Scholar
  152. 152.
    Yiu WH, Pan C-J, Ruef RA, et al. Angiotensin mediates renal fibrosis in the nephropathy of glycogen storage disease type I. Kidney Int. 2008;73:716–23.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Urushihara M, Kagami S, Ito M, et al. Transforming growth factor-beta in renal disease with glycogen storage disease I. Pediatr Nephrol. 2004;19:676–8.PubMedGoogle Scholar
  154. 154.
    Greene HL, Slonim AE, O’Neill Jr JA, et al. Continuous nocturnal intragastric feeding for management of type 1 glycogen storage disease. N Engl J Med. 1976;294:423–5.PubMedGoogle Scholar
  155. 155.
    Wolfsdorf JI, Crigler Jr JF. Cornstarch regimens for nocturnal treatment of young adults with type I glycogen storage disease. Am J Clin Nutr. 1997;65:1507–11.PubMedGoogle Scholar
  156. 156.
    Chen YT, Cornblath M, Sidbury JB, et al. Cornstarch therapy in type I glycogen storage disease. N Engl J Med. 1984;310:171–5.PubMedGoogle Scholar
  157. 157.
    Iyer SG, Chen CL, Wang CC, et al. Long-term results of living donor liver transplantation for glycogen storage disorders in children. Liver Transpl. 2007;13:848–52.PubMedGoogle Scholar
  158. 158.
    Fanconi G, Bickel H. Die chronishe aminoaidurie (aminosäurendiabetes oder nehrotishßglukosurisher zwergwuchs) bei der glykogenose und der cystinkrankhein. Helv Pediatr Acta. 1949;4:359–96.Google Scholar
  159. 159.
    Manz F, Bickel H, Brodehl J, et al. Fanconi-Bickel syndrome. Pediatr Nephrol. 1987;1:509–19.PubMedGoogle Scholar
  160. 160.
    Furlan F, Santer R, Vismara E, et al. Bilateral nuclear cataracts as the first neonatal sign of Fanconi-Bickel syndrome. J Inherit Metab Dis. 2006;29:685.PubMedGoogle Scholar
  161. 161.
    Santer R, Schneppenheim R, Dombrowski A, et al. Fanconi-Bickel syndrome- a congenital defect of the liver-type facilitative glucose transporter. J Inherit Metab Dis. 1998;21:191–4.PubMedGoogle Scholar
  162. 162.
    Yoo H-W, Shin Y-K, Seo E-J, et al. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr. 2002;161:351–3.PubMedGoogle Scholar
  163. 163.
    Santer R, Schneppenheim R, Dombrowski A, et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17:324–6.PubMedGoogle Scholar
  164. 164.
    Santer R, Groth S, Kinner M, et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet. 2002;110:21–9.PubMedGoogle Scholar
  165. 165.
    Bell GI, Burnant CF, Takeda J, et al. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993;268:19161–4.PubMedGoogle Scholar
  166. 166.
    Berry GT, Baker L, Kaplan FS, et al. Diabetes-like renal glomerular disease in Fanconi-Bickel syndrome. Pediatr Nephrol. 1995;9:287–91.PubMedGoogle Scholar
  167. 167.
    Lee PJ, van’t Hoff WG, Leonard JV. Catch-up growth in Fanconi-Bickel syndrome with uncooked cornstarch. J Inherit Metab Dis. 1995;18:153–6.PubMedGoogle Scholar
  168. 168.
    Riva S, Ghisalberti C, Parini R, et al. The Fanconi-Bickel syndrome: a case of neonatal onset. J Perinatol. 2004;24:322–3.PubMedGoogle Scholar
  169. 169.
    Berfer R, Smit GP, Stoker de Varies SA, et al. Deficiency of fumarylacetoacetase in a patient with hereditary tyrosinemia. Clin Chim Acta. 1981;114:37–44.Google Scholar
  170. 170.
    Kvittingen EA, Jellum E, Stokke O, et al. Assay of fumarylacetoacetate fumarylhydrolase in human liver: deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta. 1981;115:311–9.PubMedGoogle Scholar
  171. 171.
    Holme E, Lindstedt S. Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr. 1995;6:726–32.Google Scholar
  172. 172.
    Weinberg AG, Mize CE, Worthen HG. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr. 1976;88:434–8.PubMedGoogle Scholar
  173. 173.
    Castilloux J, Laberge AM, Martin SR, et al. “Silent” tyrosinemia presenting as hepatocellular carcinoma in a 10-year-old girl. J Pediatr Gastroenterol Nutr. 2007;44:375–7.PubMedGoogle Scholar
  174. 174.
    Mitchell G, Larochell J, Lambert M, et al. Neurologic crises in hereditary tyrosinemia. N Engl J Med. 1990;322:432–7.PubMedGoogle Scholar
  175. 175.
    Freeto S, Mason D, Chen J, et al. A rapid ultra performance liquid chromatography tandem mass spectrometric method for measuring amino acids associated with maple syrup urine disease, tyrosinemia and phenylketonuria. Ann Clin Biochem. 2007;44:474–81.PubMedGoogle Scholar
  176. 176.
    Pardis K, Weber A, Seidman EG, et al. Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am J Hum Genet. 1990;47:338–42.Google Scholar
  177. 177.
    Nissenkorn A, Korman SH, Vardi O, et al. Carnitine-deficient myopathy as a presentation of tyrosinemia type I. J Child Neurol. 2001;16:642–4.PubMedGoogle Scholar
  178. 178.
    Endo F, Sun MS. Tyrosinemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis. 2002;25:227–34.PubMedGoogle Scholar
  179. 179.
    Nakamura K, Tanaka Y, Mitsubishi H, et al. Animal models of tyrosinemia. J Nutr. 2007;137:1556S–60.PubMedGoogle Scholar
  180. 180.
    Spencer PD, Medow MS, Moses LC, et al. Effects of succinylacetone on the uptake of sugars and amino acids by brush border vesicles. Kidney Int. 1988;34:671–7.PubMedGoogle Scholar
  181. 181.
    Roth KS, Carter BE, Higgins ES. Succinylacetone effects on renal tubular phosphate metabolism: a new model for experimental Fanconi syndrome. Proc Soc Exp Biol Med. 1991;196:428–31.PubMedGoogle Scholar
  182. 182.
    Fairney A, Francis D, Ersser RS, et al. Diagnosis and treatment of tyrosinosis. Arch Dis Child. 1968;43:540–7.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Masurl-Paulet A, Poggi-Bach J, Rolland MO, et al. NTBC treatment in tyrosinemia type I: long-term outcome in French patients. J Inherit Metab Dis. 2008;31:81–7.Google Scholar
  184. 184.
    Koelink CJ, van Hasselt P, van der Ploeg A, et al. Tyrosinemia type I treated by NTBC: how does AFP predict liver cancer? Mol Genet Metab. 2006;89:310–5.PubMedGoogle Scholar
  185. 185.
    Shoemaker LR, Strife CF, Balisteri WF, et al. Rapid improvement of the renal tubular dysfunction associated with tyrosinemia after hepatic replacement. Pediatrics. 1992;89:251–5.PubMedGoogle Scholar
  186. 186.
    Das SK, Ray K. Wilson’s disease: an update. Nat Clin Pract Neurol. 2006;2:482–93.PubMedGoogle Scholar
  187. 187.
    Bull PC, Thomas GR, Rommens JM, et al. The Wilson disease is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5:327–37.PubMedGoogle Scholar
  188. 188.
    Figus A, Angius A, Loudianos G, et al. Molecular pathology and haplotype analysis of Wilson disease in Mediterranean population. Am J Hum Genet. 1995;57:1318–24.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Vulpe C, Levinson B, Whitney S, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993;3:7–13.PubMedGoogle Scholar
  190. 190.
    Yang XL, Miura N, Kawarada Y, et al. Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem J. 1997;326:897–902.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Reynolds ES, Tannen RL, Tyler HR. The renal lesion in Wilson’s disease. Am J Med. 1966;40:518–37.Google Scholar
  192. 192.
    Sozeri E, Feist D, Ruder H, et al. Proteinuria and other renal functions in Wilson’s disease. Pediatr Nephrol. 1997;11:307–11.PubMedGoogle Scholar
  193. 193.
    Kalra V, Mahjan S, Kesarwani PK, et al. Rare presentation of Wilson’s disease: a case report. Int Urol Nephrol. 2004;36:289–91.PubMedGoogle Scholar
  194. 194.
    Fulop M, Sternlieb I, Scheinberg IM. Defective urinary acidification in Wilson’s disease. Ann Intern Med. 1968;68:770–7.PubMedGoogle Scholar
  195. 195.
    Leu ML, Strickland GT, Gutman RA. The renal lesion on Wilson’s disease: response to penicilamine therapy. Am J Med Sci. 1970;260:381–98.PubMedGoogle Scholar
  196. 196.
    Elasas LG, Hayslett JP, Sprgo BH, et al. Wilson’s disease with reversible renal tubular dysfunction. Correlation with proximal tubular ultrastructure. Ann Intern Med. 1971;75:427–33.Google Scholar
  197. 197.
    Ala A, Borjigin J, Rochwarger A, et al. Wilson disease in septuagenarian siblings: raising the bar for diagnosis. Hepatology. 2005;41:668–70.PubMedGoogle Scholar
  198. 198.
    Page RA, Davie CA, McManus D, et al. Clinical correlation of brain MRI and MRS abnormalities in patients with Wilson disease. Neurology. 2004;63:638–43.PubMedGoogle Scholar
  199. 199.
    Kuruvilla A, Joseh S. “Face of the giant panda” sign in Wilson’s disease; revisited. Neurol India. 2000;48:395–6.PubMedGoogle Scholar
  200. 200.
    Ala A, Walker A, Ashkan K, et al. Wilson’s disease. Lancet. 2007;369:397–408.PubMedGoogle Scholar
  201. 201.
    Brewer GJ, Dick RD, Johnson V, et al. Treatment of Wilson’s disease with zinc: XV. Long-term follow-up. J Lab Clin Med. 1998;132:264–78.PubMedGoogle Scholar
  202. 202.
    Czlonkowska A, Gajda J, Rodo M. Effects of long-term treatment in Wilson’s disease with d-penicillamine and zinc sulphate. J Neurol. 1996;243:269–73.PubMedGoogle Scholar
  203. 203.
    Simell O, Perheentupa J, Rapola J, et al. Lysinuric protein intolerance. Am J Med. 1975;59:229–40.PubMedGoogle Scholar
  204. 204.
    Borsani G, Bassi MT, Sperandeo MP, et al. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet. 1999;21:297–301.PubMedGoogle Scholar
  205. 205.
    Benninga MA, Lilien M, de Koning TJ, et al. Renal Fanconi syndrome with ultrastructural defects in lysinuric protein intolerance. J Inherit Metab Dis. 2007;30:402–3.PubMedGoogle Scholar
  206. 206.
    Golachowska MR, van Dael CML, Keuning H, et al. MYO5B mutations in patients with microvillous inclusion disease presenting with transient renal Fanconi syndrome. J Pediatr Gastroenterol Nut. 2012;54:491–8.Google Scholar
  207. 207.
    Marshansky V, Ausiello DA, Brown D. Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens. 2002;11:527–37.PubMedGoogle Scholar
  208. 208.
    Winter WE, Nakamura M, House DV. Monogenic diabetes mellitus in youth. The MODY syndromes. Endocrinol Metab Clin North Am. 2000;28:765–85.Google Scholar
  209. 209.
    Hamilton AJ, Bingham C, McDonald TJ, et al. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J Med Genet. 2014;51:165–9.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 2004;447:763–7.PubMedGoogle Scholar
  211. 211.
    Magen D, Berger L, Coady M, et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med. 2010;362:1102–9.PubMedGoogle Scholar
  212. 212.
    Tieder M, Sakarcan A, Neiberger R. Elevated serum 1,25-dihydroxyvitamin D concentrations in siblings with primary Fanconi’s syndrome. N Engl J Med. 1988;319:845–9.PubMedGoogle Scholar
  213. 213.
    Ben-Ishay D, Dreyfuss F, Ylmann TD. Fanconi syndrome with hypouricemia in an adult. Am J Med. 1961;31:793–800.PubMedGoogle Scholar
  214. 214.
    Klootwijk ED, Reichold M, Helip-Wooley A, Tolaymat A, Broeker C, Robinette SL, et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. N Engl J Med. 2014;370:129–38Google Scholar
  215. 215.
    Sheldon W, Luder J, Webb B. A familial tubular absorption defect of glucose and amino acids. Arch Dis Child. 1961;36:90–5.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Friedman AL, Trygstad CW, Chesney RW. Autosomal dominant Fanconi syndrome with early renal failure. Am J Med Genet. 1978;2:225–32.PubMedGoogle Scholar
  217. 217.
    Patrick A, Vameron JS, Ogg CS. A family with a dominant form of idiopathic Fanconi syndrome leading to renal failure in adult life. Clin Nephrol. 1981;16:289–92.PubMedGoogle Scholar
  218. 218.
    Wen SF, Friedman AL, Oberley TD. Two case studies from a family with primary Fanconi syndrome. Am J Kidney Dis. 1989;13:240–6.PubMedGoogle Scholar
  219. 219.
    Tolaymat A, Sakarcan A, Neiberger R. Idiopathic Fanconi syndrome in a family. Part I. Clinical aspects. J Am Soc Nephrol. 1992;2:1310–7.PubMedGoogle Scholar
  220. 220.
    Wornell P, Crocker J, Wade A, et al. An Acadian variant of Fanconi syndrome. Pediatr Nephrol. 2007;22:1711–5.PubMedGoogle Scholar
  221. 221.
    Nieman N, Pierson M, Marchal C, et al. Nephropathie familiale glomerulotubulaire avec syndrome de Toni-Debré-Fanconi. Arch Fr Pediatr. 1968;25:43–69.Google Scholar
  222. 222.
    McVicar M, Exeni R, Susin M. Nephrotic syndrome and multiple tubular defects in children: an early sign of focal segmental glomerulosclerosis. J Pediatr. 1980;97:918–22.PubMedGoogle Scholar
  223. 223.
    Ren H, Wang W-M, Chen X-N, et al. Renal involvement and follow up of 130 patients with primary Sjögren syndrome. J Rheumatol. 2008;35:278–84.PubMedGoogle Scholar
  224. 224.
    Yang Y-S, Peng C-H, Sia S-K, et al. Acquired hypophosphatemia osteomalacia associated with Fanconi’s syndrome in Sjögren syndrome. Rheumatol Int. 2007;27:593–7.PubMedGoogle Scholar
  225. 225.
    Batuman V. Proximal tubular injury in myeloma. Contrib Nephrol. 2007;153:87–104.PubMedGoogle Scholar
  226. 226.
    Vanmassenhove J, Sallee M, Guilopain P, et al. Fanconi syndrome in lymphoma patients: report of the first case series. Nephrol Dial Transplant. 2010;25:2516–20.PubMedGoogle Scholar
  227. 227.
    Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet. 2009;373:759–67.PubMedGoogle Scholar
  228. 228.
    Friedman AL, Chesney R. Fanconi’s syndrome in renal transplantation. Am J Nephrol. 1981;1:145–7.Google Scholar
  229. 229.
    Dobrin RS, Vernier RL, Fish AJ. Acute eosinophilic interstitial nephritis and renal failure with bone marrow-lymph node granuloma and anterior uveitis. Am J Med. 1975;59:325–33.PubMedGoogle Scholar
  230. 230.
    Igarashi T, Kawato H, Kamoshita S, et al. Acute tubulointersitial nephritis with uveitis syndrome presenting as multiple tubular dysfunction including Fanconi’s syndrome. Pediatr Nephrol. 1992;6:547–9.PubMedGoogle Scholar
  231. 231.
    Wen YK. Tubulointerstitial nephritis and uveitis with Fanconi syndrome in a patient with ankylosing spondylitis. Clin Nephrol. 2009;72:315–8.PubMedGoogle Scholar
  232. 232.
    Tung KS, Black WC. Association of renal glomerular and tubular immune complex disease and autoimmune basement membrane antibody. Lab Invest. 1975;32:696–700.Google Scholar
  233. 233.
    Griswold WR, Krous HF, Reznik V, et al. The syndrome of autoimmune interstitial nephritis and membranous nephropathy. Pediatr Nephrol. 1997;11:699–702.PubMedGoogle Scholar
  234. 234.
    Makker SP, Widstrom R, Huang J. Membranous nephropathy, interstitial nephritis, and Fanconi syndrome – glomerular antigen. Pediatr Nephrol. 1996;10:7–13.PubMedGoogle Scholar
  235. 235.
    Kinoshita-Katahashi N, Fukasawa H, Ishigaki S, et al. Acquired Fanconi syndrome in patients with Legionella pneumonia. BMC Nephrol. 2013;14:171.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Alexandridis G, Liamis G, Elisaf M. Reversible tubular dysfunction that mimicked Fanconi’s syndrome in a patient with anorexia nervosa. Int J Eat Disord. 2001;30:227–30.PubMedGoogle Scholar
  237. 237.
    Watanabe T. Proximal renal tubular dysfunction in primary distal renal tubular acidosis. Pediatr Nephrol. 2005;20:86–8.PubMedGoogle Scholar
  238. 238.
    Hall AM, Bass P, Uniwin R. Drug- induced renal Fanconi syndrome. QJM. 2014;107:261–9.PubMedGoogle Scholar
  239. 239.
    Cleveland WW, Adams WC, Mann JC, et al. Acquired Fanconi syndrome following degraded tetracycline. J Pediatr. 1965;66:333–42.PubMedGoogle Scholar
  240. 240.
    Gainza FJ, Minguela JI, Lampreabe I. Aminoglycoside-associated Fanconi’s syndrome: an underrecognized entity. Nephron. 1997;77:205–11.PubMedGoogle Scholar
  241. 241.
    Ghiculescu R, Kubler P. Aminoglycoside-associated Fanconi syndrome. Am J Kidney Dis. 2006;48:E89–93.PubMedGoogle Scholar
  242. 242.
    Min HK, Kim EO, Lee SJ, et al. Rifampin-associated tubulointerstitial nephritis and Fanconi syndrome presenting as hypokalemic paralysis. BMC Nephrol. 2013;14:13.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Tsimihodiomos V, Psychogios N, Kakaidi V, et al. Salicylate-induced proximal tubular dysfunction. Am J Kidney Dis. 2007;50:463–7.Google Scholar
  244. 244.
    Zaki EL, Springate JE. Renal injury from valproic acid: case report and literature review. Pediatr Neurol. 2002;27:318–9.PubMedGoogle Scholar
  245. 245.
    Bagnis CI, Deray G, Baumelou A, et al. Herbs and the kidney. Am J Kidney Dis. 2004;44:1–11.Google Scholar
  246. 246.
    Hong Y-T, Fu L-S, Chung L-H, et al. Fanconi’s syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs. Pediatr Nephrol. 2006;21:577–9.PubMedGoogle Scholar
  247. 247.
    Takamoto K, Kawada M, Usui T, et al. Aminoglycoside antibiotics reduce glucose reabsorption in kidney through down-regulation of SGLT1. Biochem Biophys Res Commun. 2003;308:866–71.PubMedGoogle Scholar
  248. 248.
    Humes HD. Aminoglycoside nephrotoxicity. Kidney Int. 1988;33:900–11.PubMedGoogle Scholar
  249. 249.
    Endo A, Fujita Y, Fuchigami T, et al. Fanconi syndrome caused by valproic acid. Pediatr Nephrol. 2010;42:287–90.Google Scholar
  250. 250.
    Buttemer S, Pai M, Lau KK. Ifosfamide induced Fanconi syndrome. BMJ Case Reports. 2011;2011.Google Scholar
  251. 251.
    Zamialuski-Tucker MJ, Morris ME, Springate JE. Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol. 1994;129:170–5.Google Scholar
  252. 252.
    Yaseen X, Michoudet C, Baverel G, et al. Mechanisms of the ifosfamide-induced inhibition of endocytosis in the rat proximal kidney tubule. Arch Toxicol. 2008;82:607–14.PubMedGoogle Scholar
  253. 253.
    Sayed-Ahmed MM, Hafez MM, Aldelemy ML, et al. Downregulation of oxidative and nitrosative signaling by l-carnitine in ifosfamide-induced Fanconi syndrome rat model. Oxid Med Cell Longev. 2012;2012:696704.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Pratt CB, Meyer WH, Jenkins JJ, et al. Ifosfamide, Fanconi’s syndrome, and rickets. J Clin Oncol. 1991;9:1495–9.PubMedGoogle Scholar
  255. 255.
    Hanquinet S, Wouters M, Devalck C, et al. Increased renal parenchymal echogenicity in ifosfamide-induced renal Fanconi syndrome. Med Pediatr Oncol. 1995;24:116–8.PubMedGoogle Scholar
  256. 256.
    Badary OA. Taurine attenuates Fanconi syndrome induced by ifosfamide without compromising its antitumor activity. Oncol Res. 1998;10:355–60.PubMedGoogle Scholar
  257. 257.
    Portill D, Nagothu KK, Megyesi J, et al. Metabolomic study of cisplatin-induced nephrotoxiciy. Kidney Int. 2006;69:2194–204.Google Scholar
  258. 258.
    François H, Coppo P, Hayman J-P, et al. Partial Fanconi syndrome induced by Imanitib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis. 2008;51:298–301.PubMedGoogle Scholar
  259. 259.
    Meier P, Dautheville-Gibal S, Ronco PM, et al. Cidofovir-induced end-stage renal failure. Nephrol Dial Transplant. 2002;17:148–9.PubMedGoogle Scholar
  260. 260.
    Ho ES, Lin DC, Mendel DB, et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol. 2000;11:383–93.PubMedGoogle Scholar
  261. 261.
    Tanji N, Tanji K, Kambham N, et al. Adefovir nephotoxicity: possible role of mitochondrial DNA depletion. Hum Pathol. 2001;32:734–40.PubMedGoogle Scholar
  262. 262.
    Daugas E, Rougier J-P, Hill G. HAART-related nephropathies in HIV-infected patients. Kidney Int. 2005;67:393–403.PubMedGoogle Scholar
  263. 263.
    Law ST, Li KK, Ho YY. Acquired Fanconi syndrome associated with prolonged adefovir dipivoxil therapy in a chronic hepatitis B patient. Am J Ther. 2013;20:e713–6.PubMedGoogle Scholar
  264. 264.
    Verheist D, Monge M, Meynard J-L, et al. Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis. 2002;40:1331–3.Google Scholar
  265. 265.
    Malik A, Abraham P, Malik N. Acute renal failure and Fanconi syndrome in an AIDS patient on tenofovir treatment-case report and review of literature. J Infect. 2005;51:e61–5.PubMedGoogle Scholar
  266. 266.
    Rafat C, Fakhouri F, Ribeil JA, et al. Fanconi syndrome due to deferasirox. Am J Kidney Dis. 2009;54:931–4.PubMedGoogle Scholar
  267. 267.
    Rheault MN, Bechtel H, Neglia JP, et al. Reversible Fanconi syndrome in a pediatric patient on deferasirox. Pediatr Blood Cancer. 2011;56:674–6.PubMedGoogle Scholar
  268. 268.
    Murphy N, Elramah M, Vats H, et al. A case report of deferasirox-induced kidney injury and Fanconi syndrome. WMJ. 2013;112:177–80.PubMedGoogle Scholar
  269. 269.
    Gil HW, Yang JO, Lee EY, et al. Paraquat-induced Fanconi syndrome. Nephrology (Carlton). 2005;10:430–2.Google Scholar
  270. 270.
    Hruz P, Mayr M, Löw R, et al. Fanconi’s syndrome, acute renal failure, and tonsil ulceration after colloidal bismuth substrate intoxication. Am J Kidney Dis. 2002;39:E18.PubMedGoogle Scholar
  271. 271.
    Otten J, Vis HL. Acute reversible renal tubular dysfunction following intoxication with methyl-3-choromone. J Pediatr. 1968;73:422–5.PubMedGoogle Scholar
  272. 272.
    Butler HE, Morgan JM, Smythe CM. Mercaptopurine and acquired tubular dysfunction in adult nephrosis. Arch Intern Med. 1965;116:853–6.PubMedGoogle Scholar
  273. 273.
    Moss AH, Gabow PA, Kaehny WD, et al. Fanconi syndrome and distal renal tubular acidosis after glue sniffing. Ann Intern Med. 1980;92:69–70.PubMedGoogle Scholar
  274. 274.
    Barbier O, Jacquillet G, Tau M, et al. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99:105–10.Google Scholar
  275. 275.
    Chisolm JJ, Harrison HC, Eberlein WE, et al. Aminoaciduria, hyperphosphaturia and rickets in lead poisoning. Am J Dis Child. 1955;89:159–68.Google Scholar
  276. 276.
    Logman-Adham M. Aminoaciduira and glycosuria following severe childhood lead poisoning. Pediatr Nephrol. 1998;12:218–21.Google Scholar
  277. 277.
    Goyer RA, Tsuchuja K, Leonard DL, et al. Aminoaciduria in Japanese workers in the lead and cadmium industries. Am J Clin Pathol. 1972;57:635–42.PubMedGoogle Scholar
  278. 278.
    Uetani M, Kobayashi E, Suwazono Y, et al. Investigation of renal damage in the cadmium-polluted Jinzu River basin, based on health examinations in 1967 and 1968. Int J Environ Health Res. 2007;17:231–42.PubMedGoogle Scholar
  279. 279.
    Elizbieta S-J, Roman L. Metabolic bone disease in children: etiology and treatment options. Treat Endocrinol. 2006;5:297–318.Google Scholar
  280. 280.
    Plank C, Konrad M, Dörr HG, et al. Growth failure in a girl with Fanconi syndrome and growth hormone deficiency. Nephrol Dial Transplant. 2004;19:1910–2.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Center for Child Health and Development (NCCHD)TokyoJapan

Personalised recommendations