Nephrogenic Diabetes Insipidus in Children

  • Nine V. A. M. Knoers
  • Elena N. Levtchenko
Living reference work entry


Congenital nephrogenic diabetes insipidus (NDI) is a disorder associated with mutations in either the AVP2R or AQP2 gene, causing the inability of patients to concentrate their pro-urine, which leads to a high risk of dehydration. In this chapter, the clinical aspects as well as the current knowledge regarding the cell biological aspects of congenital X-linked, autosomal recessive and autosomal dominant NDI will be discussed, specifically addressing the latest developments within the field. Based on deepened mechanistic understanding, new therapeutic strategies are currently being explored, which we also describe here.


Nephrogenic Diabetes Insipidus Collect Duct Cell Inner Medullary Collect Duct AQP2 Trafficking AVPR2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McIlraith CH. Notes on some cases of diabetes insipidus with marked family and hereditary tendencies. Lancet. 1892;II:767–8.Google Scholar
  2. 2.
    Forssman H. On hereditary diabetes insipidus with special regard to a sex-linked form. Acta Med Scand. 1945;153:3–196.Google Scholar
  3. 3.
    Waring AJ, Kajdi L, Tappan V. A congenital defect of water metabolism. Am J Dis Child. 1945;69:323–4.Google Scholar
  4. 4.
    Williams RH, Henry C. Nephrogenic diabetes insipidus: transmitted by females and appearing during infancy in males. Ann Intern Med. 1947;27:84–95.PubMedGoogle Scholar
  5. 5.
    Kaplan SA. Nephrogenic diabetes insipidus. In: Holliday MA, Barratt TM, Vernier RL, editors. Pediatric nephrology. Baltimore: Williams & Wilkins; 1987. p. 623–5.Google Scholar
  6. 6.
    van Lieburg AF, Knoers NVAM, Monnens LAH. Clinical presentation and follow-up of thirty patients with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 1999;10:1958–64.PubMedGoogle Scholar
  7. 7.
    Lejarraga H, Caletti MG, Caino S, et al. Long-term growth of children with nephrogenic diabetes insipidus. Pediatr Nephrol 2008;23:2007–12.Google Scholar
  8. 8.
    Hillman DA, Neyzi O, Porter P, et al. Renal (vasopressin-resistant) diabetes insipidus: definition of the effects of homeostatic limitation in capacity to conserve water on the physical, intellectual, and emotional development of a child. Pediatrics. 1958;21:430–5.PubMedGoogle Scholar
  9. 9.
    Vest M, Talbot NB, Crawford JD. Hypocaloric dwarfism and hydronephrosis in diabetes insipidus. Am J Dis Child. 1963;105:175–81.PubMedGoogle Scholar
  10. 10.
    Forssman H. Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychiatr Neurol Scand. 1955;30:577–87.PubMedGoogle Scholar
  11. 11.
    Macaulay D, Watson M. Hypernatremia in infants as a cause of brain damage. Arch Dis Child. 1967;42:485–91.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bichet DG. Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:245–51.PubMedGoogle Scholar
  13. 13.
    Kanzaki S, Omura T, Miyake M, et al. Intracranial calcification in nephrogenic diabetes insipidus. JAMA. 1985;254:3349–50.PubMedGoogle Scholar
  14. 14.
    Schofer O, Beetz R, Kruse K, et al. Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child. 1990;65:885–7.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Hoekstra JA, van Lieburg AF, Monnens LAH, et al. Cognitive and psychosocial functioning of patients with nephrogenic diabetes insipidus. Am J Med Genet. 1996;61:81–8.PubMedGoogle Scholar
  16. 16.
    Uribarri J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron. 1993;65:346–9.PubMedGoogle Scholar
  17. 17.
    Shalev H, Romanovsky I, Knoers NV, et al. Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant. 2004;19:608–13.PubMedGoogle Scholar
  18. 18.
    Yoo TH, Ryu DR, Song YS, et al. Congenital nephrogenic diabetes insipidus presented with bilateral hydronephrosis: genetic analysis of V2R gene mutations. Yonsei Med J. 2006;47:126–30.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Hong CR, Kang HG, Choi HJ, et al. X-linked recessive nephrogenic diabetes insipidus: a clinico-genetic study. J Pediatr Endocrinol Metab. 2014;27:93–9.PubMedGoogle Scholar
  20. 20.
    Ulinski T, Grapin C, Forin V, et al. Severe bladder dysfunction in a family with ADH receptor gene mutation responsible for X-linked nephrogenic diabetes insipidus. Nephrol Dial Transplant. 2004;19:2928–9.PubMedGoogle Scholar
  21. 21.
    Monnens L, Smulders Y, van Lier H, et al. DDAVP test for assessment of renal concentrating capacity in infants and children. Nephron. 1991;29:151–4.Google Scholar
  22. 22.
    Bockenhauer D, Bichet DG. Inherited secondary nephrogenic diabetes insipidus: concentrating on humans. Am J Physiol Renal Physiol. 2013;304:F1037–42.PubMedGoogle Scholar
  23. 23.
    Wesche D, Deen PM, Knoers NV. Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol. 2012;27:2183–204.PubMedGoogle Scholar
  24. 24.
    Katsura T, Ausiello DA, Brown D. Direct demonstration of aquaporin-2 water channel recycling in stably transfected LCC-PK1 epithelial cells. Am J Physiol. 1996;39:F548–53.Google Scholar
  25. 25.
    Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta. 2006;1758:1117–25.PubMedGoogle Scholar
  26. 26.
    Sasaki S, Noda Y. Aquaporin-2 protein dynamics within the cell. Curr Opin Nephrol Hypertens. 2007;16:348–52.PubMedGoogle Scholar
  27. 27.
    Bouley R, Hasler U, Lu HA, et al. Bypassing vasopressin receptor signalling pathways in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:266–78.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev. 2013;34:278–301.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Hendriks G, Koudijs M, van Balkom BW, et al. Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem. 2004;279:2975–83.PubMedGoogle Scholar
  30. 30.
    Nielsen S, DiGiovanni SR, Christensen EI, et al. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993;90:11663–7.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Fushimi K, Sasaki S, Muramo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997;272:14800–4.PubMedGoogle Scholar
  32. 32.
    Katsura T, Gustafson CE, Ausiello DA. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LCC-PK1 cells. Am J Physiol. 1997;272:F816–22.Google Scholar
  33. 33.
    Klussmann E, Maric K, Wiesner B, et al. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 1999;274:4934–8.PubMedGoogle Scholar
  34. 34.
    Kamsteeg EJ, Heijnen I, van Os CH, et al. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol. 2000;1:919–30.Google Scholar
  35. 35.
    Jo I, Harris HW, Amendt Raduege AM, Majewski RR, et al. Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc Natl Acad Sci U S A. 1995;92:1876–80.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Liebenhoff U, Rosenthal W. Identification of Rab3-, Rab5a-, and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett. 1995;365:209–13.PubMedGoogle Scholar
  37. 37.
    Nielsen S, Marples D, Birn H, et al. Expression of VAMP2-like protein in kidney collecting duct intracellular vesicles. Colocalization with aquaporin-2 water channels. J Clin Invest. 1995;96:1834–44.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Mandon B, Chou CL, Nielsen S, Knepper MA. Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest. 1996;98:906–13.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Tajika Y, Masuzaki T, Suzuki T, et al. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol. 2005;124:1–12.PubMedGoogle Scholar
  40. 40.
    Klussmann E, Tamma G, Lorenz D, et al. An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 2001;276:20451–7.PubMedGoogle Scholar
  41. 41.
    Simon H, Gao Y, Franki N, Hays RH. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol. 1993;265:C757–62.PubMedGoogle Scholar
  42. 42.
    Sun TX, Van Hoek A, Huang Y, et al. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol. 2002;282:F998–1011.PubMedGoogle Scholar
  43. 43.
    Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.PubMedGoogle Scholar
  44. 44.
    Kamsteeg EJ, Hendriks G, Boone M, et al. Short-chain ubiquitination of the aquaporin-2 water channel. Proc Natl Acad Sci U S A. 2006;28:18344–9.Google Scholar
  45. 45.
    Vossenkamper A, Nedvetsky PI, Wiesner B, et al. Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol. 2007;293:C1129–38.PubMedGoogle Scholar
  46. 46.
    Marples D, Schroer TA, Ahrens N, et al. Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol. 1998;274:F384–94.PubMedGoogle Scholar
  47. 47.
    Palamidessi A, Frittoli E, Garre M, et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell. 2008;134:135–47.PubMedGoogle Scholar
  48. 48.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.PubMedGoogle Scholar
  49. 49.
    Matsumura Y, Uchida S, Rai T, et al. Transcription regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol. 1997;8:861–7.PubMedGoogle Scholar
  50. 50.
    Carter C, Simpkiss M. The “carrier” state in nephrogenic diabetes insipidus. Lancet. 1956;II:1069–73.Google Scholar
  51. 51.
    van den Ouweland AMW, Knoop MT, Knoers NVAM, et al. Colocalization of the gene for nephrogenic diabetes insipidus (DIR) and the vasopressin type-2 receptor (AVPR2) in the Xq28 region. Genomics. 1992;13:1350–3.PubMedGoogle Scholar
  52. 52.
    van den Ouweland AMW, Dreesen JCFM, Verdijk M, et al. Mutations in the vasopressin type-2 receptor gene associate with nephrogenic diabetes insipidus. Nat Genet. 1992;2:99–102.PubMedGoogle Scholar
  53. 53.
    Pan Y, Metzenberg A, Das S, et al. Mutations of the V2 receptor are associated with X-linked nephrogenic diabetes insipidus. Nat Genet. 1992;2:103–6.PubMedGoogle Scholar
  54. 54.
    Rosenthal W, Seibold A, Antamarian A, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature. 1992;359:233–5.PubMedGoogle Scholar
  55. 55.
    Schreiner RL, Skafish PR, Anand SK, et al. Congenital nephrogenic diabetes insipidus in a baby girl. Arch Dis Child. 1978;53:906–15.PubMedGoogle Scholar
  56. 56.
    Langley JM, Balfe JW, Selander T, et al. Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am J Med Genet. 1991;38:90–4.PubMedGoogle Scholar
  57. 57.
    Brodehl J, Braun L. Familiarer nephrogener diabetes insipidus mit voller auspragung bei einer weiblichen saugling. Klin Wochenschr. 1964;42:563.PubMedGoogle Scholar
  58. 58.
    Deen PMT, Verdijk MAJ, Knoers NVAM, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994;264:92–5.PubMedGoogle Scholar
  59. 59.
    Mulders SM, Bichet DG, Rijss JPL, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998;102:57–66.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Morello J-P, Bichet DG. Nephrogenic diabetes insipidus. Annu Rev Physiol. 2001;63:607–30.PubMedGoogle Scholar
  61. 61.
    Spanakis E, Milord E, Gragnoli C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol. 2008;217:605–17.PubMedGoogle Scholar
  62. 62.
    Firsov D, Mandon B, Morel A, et al. Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflugers Arch. 1994;429:79–89.PubMedGoogle Scholar
  63. 63.
    Innamorati G, Sadeghi H, Birnbaumer M. A full active nonglycosylated V2 vasopressin receptor. Mol Pharmacol. 1996;50:467–73.PubMedGoogle Scholar
  64. 64.
    Innamorati G, Sadeghi H, Eberle AN, et al. Phosphorylation of the V2 vasopressin receptor. J Biol Chem. 1997;271:2486–92.Google Scholar
  65. 65.
    Innamorati G, Sadeghi HM, Tran NT, et al. A serine cluster prevents recycling of the V2 vasopressin receptor protein. Proc Natl Acad Sci U S A. 1998;95:2222–6.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Schülein R, Rutz C, Rosenthal W. Membrane targeting and determination of transmembrane topology of the human vasopressin V2 receptor. J Biol Chem. 1996;271:28844–52.PubMedGoogle Scholar
  67. 67.
    Krause G, Hermosilla R, Oksche A, et al. Molecular and conformational features of a transport-relevant domain in the C-terminal tail of the vasopressin V2 receptor. Mol Pharmacol. 2000;57:232–42.PubMedGoogle Scholar
  68. 68.
    Schülein R, Liebenhoff U, Muller H, et al. Properties of the human arginine vasopressin V2 receptor after site-directed mutagenesis of its putative palmitoylation site. J Biol Chem. 1996;313:611–6.Google Scholar
  69. 69.
    Sasaki S, Chiga M, Kikuchi E, Rai T, Uchida S. Hereditary nephrogenic diabetes insipidus in Japanese patients: analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2. Clin Exp Nephrol. 2013;17:338–44.PubMedGoogle Scholar
  70. 70.
    Duzenli D, Saglar E, Deniz F, Azal O, Erdem B, Mergen H. Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus. Endocrine. 2012;42:664–9.PubMedGoogle Scholar
  71. 71.
    Knoers NVAM, Deen PMT. Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol. 2001;16:1146–52.PubMedGoogle Scholar
  72. 72.
    Wenkert D, Schoneberg T, Merendino Jr JJ, et al. Functional characterization of five V2 vasopressin receptor gene mutations. Mol Cell Endocrinol. 1996;124:43–50.PubMedGoogle Scholar
  73. 73.
    Deen PMT, Brown D. Trafficking of native and mutant mammalian MIP proteins. In: Hohmann S, Agre P, Nielsen S, editors. Aquaporins. San Diego: Academic Press; 2001. p. 235–76.Google Scholar
  74. 74.
    Robben JH, Knoers NV, Deen PM. Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model. Am J Physiol Renal Physiol. 2005;289:F265–72.PubMedGoogle Scholar
  75. 75.
    Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol. 2001;13:431–7.PubMedGoogle Scholar
  76. 76.
    Hermosilla R, Oueslati M, Donalies U, et al. Disease-causing V(2) vasopressin receptors are retained in different compartments of the early secretory pathway. Traffic. 2004;5:993–1005.PubMedGoogle Scholar
  77. 77.
    Pan Y, Wilson P, Gitschier J. The effect of eight V2 vasopressin receptor mutations on stimulation of adenylyl cyclase and binding to vasopressin. J Biol Chem. 1994;269:31933–7.PubMedGoogle Scholar
  78. 78.
    Robben JH, Knoers NV, Deen PM. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2006;291:F257–70.PubMedGoogle Scholar
  79. 79.
    Ala Y, Morin D, Sabatier N, et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild phenotype. J Am Soc Nephrol. 1998;9:1861–72.PubMedGoogle Scholar
  80. 80.
    Bernier V, Lagace M, Lonergan M, et al. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol. 2004;18:2074–84.PubMedGoogle Scholar
  81. 81.
    Barak LS, Oakley RH, Laporte SA, et al. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A. 2001;98:93–8.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Postina R, Ufer E, Pfeiffer R, et al. Misfolded vasopressin V2 receptors caused by extracellular point mutations entail congenital nephrogenic diabetes insipidus. Mol Cell Endocrinol. 2000;164:31–9.PubMedGoogle Scholar
  83. 83.
    Faerch M, Christensen JH, Corydon TJ, et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene. Clin Endocrinol (Oxf). 2008;68:395–403.Google Scholar
  84. 84.
    Armstrong SP, Seeber RM, Ayoub MA, et al. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V). PLoS One. 2013;8:e65885.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Neocleous V, Skordis N, Shammas C, et al. Identification and characterization of a novel X-linked AVPR2 mutation causing partial nephrogenic diabetes insipidus: a case report and review of the literature. Metabolism. 2012;61:922–30.PubMedGoogle Scholar
  86. 86.
    Bockenhauer D, Carpentier E, Rochdi D, et al. Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol. 2010;114:1–10.Google Scholar
  87. 87.
    Kalenga K, Persu A, Goffin E, et al. Intrafamilial phenotype variability in nephrogenic diabetes insipidus. Am J Kidney Dis. 2002;39:737–43.PubMedGoogle Scholar
  88. 88.
    Fushimi K, Uchida S, Harra Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993;361:549–52.PubMedGoogle Scholar
  89. 89.
    Jung JS, Preston GM, Smith BL, et al. Molecular structure of the water channel through aquaporin-CHIP. J Biol Chem. 1994;269:14648–54.PubMedGoogle Scholar
  90. 90.
    Heymann JB, Engel A. Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci. 1999;14:187–93.PubMedGoogle Scholar
  91. 91.
    Hub JS, Grubmüller H, de Groot BL. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol. 2009;190:57–76.PubMedGoogle Scholar
  92. 92.
    de Groot BL, Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 2001;294:2353–7.PubMedGoogle Scholar
  93. 93.
    Frick A, Eriksson UK, de Mattia F, et al. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci U S A. 2014;111:6305–10.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Park YJ, Baik HW, Cheong HI, et al. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene. Biomed Rep. 2014;2:596–8.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Rugpolmuang R, Deeb A, Hassan Y, et al. Novel AQP2 mutation causing congenital nephrogenic diabetes insipidus: challenges in management during infancy. J Pediatr Endocrinol Metab. 2014;27:193–7.PubMedGoogle Scholar
  96. 96.
    Leduc-Nadeau A, Lussier Y, Arthus MF, et al. New autosomal recessive mutations in aquaporin-2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes. J Physiol. 2010;588:2205–18.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Deen PM, van Aubel RA, van Lieburg AF, et al. Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol. 1996;7:836–41.PubMedGoogle Scholar
  98. 98.
    Marr N, Kamsteeg EJ, van Raak M, et al. Functionality of aquaporin-2 missense mutants in recessive nephrogenic diabetes insipidus. Pflugers Arch. 2001;442:73–7.PubMedGoogle Scholar
  99. 99.
    Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest. 1998;101:2257–67.PubMedCentralPubMedGoogle Scholar
  100. 100.
    De Mattia F, Savelkoul PJ, Bichet DG, et al. A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet. 2004;13:3045–56.PubMedGoogle Scholar
  101. 101.
    Loonen AJM, Knoers NVAM, van Os CH, et al. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:252–65.PubMedGoogle Scholar
  102. 102.
    Kuwahara M, Iwai K, Ooeda T, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet. 2001;69:738–48.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Kamsteeg E-J, Wormhoudt TAM, Rijss JPL, et al. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J. 1999;18:2394–400.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Marr N, Bichet DG, Lonergan M, et al. Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet. 2002;11:779–89.PubMedGoogle Scholar
  105. 105.
    de Mattia F, Savelkoul PJ, Kamsteeg EJ, et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol. 2005;16:2872–80.PubMedGoogle Scholar
  106. 106.
    Savelkoul PJ, De Mattia F, Li Y, et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat. 2009;30:E891–903.PubMedGoogle Scholar
  107. 107.
    Kamsteeg EJ, Savelkoul PJ, Hendriks G, et al. Missorting of the aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflugers Arch. 2008;455:1041–54.PubMedGoogle Scholar
  108. 108.
    Kamsteeg EJ, Stoffels M, Tamma G, et al. Repulsion between Lys258 and upstream arginines explains the missorting of the AQP2 mutant p.Glu258Lys in nephrogenic diabetes insipidus. Hum Mutat. 2009;30:1387–96.PubMedGoogle Scholar
  109. 109.
    van Lieburg AF, Knoers NVAM, Mallman R, et al. Normal fibrinolytic responses to 1-desamino-8-d-arginine vasopressin in patients with nephrogenic diabetes insipidus caused by mutations in the aquaporin-2 gene. Nephron. 1996;72:544–6.PubMedGoogle Scholar
  110. 110.
    Moses AM, Sangai G, Miller JL. Proposed cause of marker vasopressin resistance in a female with X-linked recessive V2 receptor abnormality. J Clin Endocrinol Metab. 1995;80:1184–6.PubMedGoogle Scholar
  111. 111.
    van Lieburg AF, Verdijk MAJ, Schoute F, et al. Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type-2 receptor mutation. Hum Genet. 1995;96:70–8.PubMedGoogle Scholar
  112. 112.
    Sato K, Fukuno H, Taniguchi T, et al. A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. Intern Med. 1999;38:808–12.PubMedGoogle Scholar
  113. 113.
    Chan Seem CP, Dossetor JF, Penney MD. Nephrogenic diabetes insipidus due to a new mutation of the arginine vasopressin V2 receptor gene in a girl presenting with non-accidental injury. Ann Clin Biochem. 1999;36:779–82.PubMedGoogle Scholar
  114. 114.
    Faerch M, Corydon TJ, Rittig S, et al. Skewed X-chromosome inactivation causing diagnostic misinterpretation in congenital nephrogenic diabetes insipidus. Scand J Urol Nephrol. 2010;44:324–30.PubMedGoogle Scholar
  115. 115.
    Nomura Y, Onigata K, Nagashima T, et al. Detection of skewed X-inactivation on two female carriers of vasopressin type 2 receptor gene mutation. J Clin Endocrinol Metab. 1997;82:3434–7.PubMedGoogle Scholar
  116. 116.
    Migeon BR. X inactivation, female mosaicism, and sex differences in renal diseases. J Am Soc Nephrol. 2008;19:2052–9.PubMedGoogle Scholar
  117. 117.
    Satoh M, Ogikubo S, Yoshizawa-Ogasawara A. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor mutations. Endocr J. 2008;55:277–84.PubMedGoogle Scholar
  118. 118.
    Marples D, Christensen S, Christensen EI, et al. Lithium-induced down-regulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest. 1995;95:1838–45.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Kwon T-H, Laursen UH, Marples D, et al. Altered expression of renal AQPs and Na+ transporters in rats with lithium-induced NDI. Am J Physiol. 2000;279:F552–64.Google Scholar
  120. 120.
    Marples D, Dorup J, Knepper MA, et al. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Am Soc Nephrol. 1996;6:325.Google Scholar
  121. 121.
    Frokiaer J, Marples D, Knepper M, et al. Bilateral ureteral obstruction downregulates expression of the vasopressin-sensitive aquaporin-2 water channel in rat kidney medulla. J Am Soc Nephrol. 1995;6:1012.Google Scholar
  122. 122.
    Teitelbaum I, Strasheim A, McGuinness S. Decreased aquaporin aquaporin-2 content in chronic renal failure. J Am Soc Nephrol. 1996;7:1273.Google Scholar
  123. 123.
    Sands JM, Naruse M, Jacobs JD, et al. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low protein diet. J Clin Invest. 1996;97:2807–14.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Walker RJ, Weggery S, Bedford JJ, et al. Lithium-induced reduction in urinary concentration ability and aquaporin-2(AQP2) excretion in healthy volunteers. Kidney Int. 2005;67:291–4.PubMedGoogle Scholar
  125. 125.
    Kortenoeven ML, Li Y, Shaw S, et al. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int. 2009;76:44–53.PubMedGoogle Scholar
  126. 126.
    Kishore BK, Ecelbarger CM. Lithium: a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol. 2013;304:F1139–49.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Christensen BM, Zuber AM, Loffing J, et al. alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol. 2011;22(2):253–61.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Kjaersgaard G, Madsen K, Marcussen N, et al. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase-3β-positive epithelium. Am J Physiol Renal Physiol. 2012;302:F455–65.PubMedGoogle Scholar
  129. 129.
    Rao R, Zhang MZ, Zhao M, et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol. 2005;288:F642–9.PubMedGoogle Scholar
  130. 130.
    Rao R, Patel S, Hao C, et al. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol. 2010;2:428–37.Google Scholar
  131. 131.
    Christensen BM, Marples D, Kim YH, et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol. 2004;286:C952–64.PubMedGoogle Scholar
  132. 132.
    Berl T. Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol. 2008;19:1076–8.PubMedGoogle Scholar
  133. 133.
    Crawford JD, Kennedy GC. Chlorothiazide in diabetes insipidus renalis. Nature. 1959;193:891–2.Google Scholar
  134. 134.
    Monnens L, Jonkman A, Thomas C. Response to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin Sci. 1984;66:709–15.PubMedGoogle Scholar
  135. 135.
    Rasher W, Rosendahl W, Henricho IA, et al. Congenital nephrogenic diabetes insipidus: vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr Nephrol. 1987;1:485–90.Google Scholar
  136. 136.
    Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 1994;83:522–5.PubMedGoogle Scholar
  137. 137.
    Alon U, Chan JCM. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol. 1985;5:9–13.PubMedGoogle Scholar
  138. 138.
    Knoers N, Monnens LAH. Amiloride-hydrochlorothiazide in the treatment of congenital nephrogenic diabetes insipidus. J Pediatr. 1990;117:499–502.PubMedGoogle Scholar
  139. 139.
    Pattaragarn A, Alon US. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr Nephrol. 2003;18:1073–6.PubMedGoogle Scholar
  140. 140.
    Early LE, Orloff J. The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest. 1962;52:2418–27.Google Scholar
  141. 141.
    Shirley DG, Walter SJ, Laycock JF. The antidiuretic effect of chronic hydrochlorothiazide treatment in rats with diabetes insipidus. Clin Sci. 1982;63:533–8.PubMedGoogle Scholar
  142. 142.
    Cesar KR, Magaldi AJ. Thiazide induces water reabsorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Physiol. 1999;277:F750–6.Google Scholar
  143. 143.
    Magaldi AJ. New insights into the paradoxical effect of thiazides in diabetes insipidus therapy. Nephrol Dial Transplant. 2000;15:1903–5.PubMedGoogle Scholar
  144. 144.
    Kim GH, Lee JW, Oh YK, et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836–43.PubMedGoogle Scholar
  145. 145.
    Morello J-P, Salahpour A, Laperriere A, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest. 2000;105:887–95.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Robben JH, Sze M, Knoers NV, et al. Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2007;292:F253–60.PubMedGoogle Scholar
  147. 147.
    Bernier V, Morello JP, Zarruk A, et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol. 2006;17:232–43.PubMedGoogle Scholar
  148. 148.
    Jean-Alphonse F, Perkovska S, Frantz MC, et al. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 2009;20:2190–203.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Robben JH, Kortenoeven ML, Sze M, et al. Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci U S A. 2009;106:12195–200.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Li JH, Chou CL, Li B, et al. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest. 2009;119:3115–26.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Olesen ET, Rutzler MR, Moeller HB, et al. Vasopressin-independent targeting of aquaporin-2 E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A. 2011;108:12949–54.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Bouley R, Breton S, Sun TX, et al. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000;106:1115–26.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Boone M, Kortenoeven M, Robben JH, et al. Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus. Nephrol Dial Transplant. 2010;25:48–54.PubMedGoogle Scholar
  154. 154.
    Bouley R, Pastor Soler N, Cohen O, et al. Stimulation of AQP2 insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol. 2005;288:F1103–12.PubMedGoogle Scholar
  155. 155.
    Bouley R, Lu HA, Nunes P, et al. Calcitonin has a vasopressin-like effect on aquaporin-2 trafficking and urinary concentration. J Am Soc Nephrol. 2011;22:59–72.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Procino G, Barbieri C, Carmosino M, et al. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch. 2011;462:753–66.PubMedGoogle Scholar
  157. 157.
    Li W, Zhang Y, Bouley R, et al. Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Renal Physiol. 2011;301:F309–18.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Nomura N, Nunes P, Bouley R, et al. High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration. Am J Physiol Cell Physiol. 2014;307:C597–605.PubMedGoogle Scholar
  159. 159.
    Yang B, Zhao D, Verkman AS. Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB J. 2009;23:503–12.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Taiyab A, Sreedhar AS, Rao C. Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol. 2009;78:142–52.PubMedGoogle Scholar
  161. 161.
    Sohara E, Rai T, Yang SS, et al. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci U S A. 2006;103:14217–22.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Bichet DG, Ruel N, Arthus MF, et al. Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron. 1990;56:449–50.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departments of Medical GeneticsUniversity Medical Centre UtrechtUtrechtThe Netherlands
  2. 2.Department of Pediatric Nephrology, Department of Growth and RegenerationUniversity Hospitals Leuven, Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations