Advertisement

Pediatric Renal Pathology

  • Agnes B. Fogo
Living reference work entry

Abstract

This chapter reviews the usual circumstances in which biopsies are obtained, methods of obtaining the biopsy material and analyzing the tissue, and the distinct characteristic morphologic findings in various diseases. Last, new experimental techniques that may provide important pathogenic, prognostic, or diagnostic information are discussed.

Keywords

Systemic Lupus Erythematosus Diabetic Nephropathy Lupus Nephritis Renal Biopsy Glomerular Basement Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author wishes to thank Drs. Tina Kon, Kathy Jabs, and Tray Hunley for their suggestions.

References

  1. 1.
    Hisano S, Kwano M, Hatae K, et al. Asymptomatic isolated microhaematuria: natural history of 136 children. Pediatr Nephrol. 1991;5:578–81.PubMedGoogle Scholar
  2. 2.
    Turi S, Visy M, Vissy Á, et al. Long-term follow-up of patients with persistent/recurrent, isolated haematuria: a Hungarian multicentre study. Pediatr Nephrol. 1989;3:235–9.PubMedGoogle Scholar
  3. 3.
    Trachtman H, Weiss RA, Bennett B, et al. Isolated hematuria in children: indications for a renal biopsy. Kidney Int. 1984;25:94–9.PubMedGoogle Scholar
  4. 4.
    Silva FG. Overview of pediatric nephropathology. Kidney Int. 1988;33:1016–32.PubMedGoogle Scholar
  5. 5.
    Sibley RK, Mahan J, Mauer SM, et al. A clinicopathologic study of forty-eight infants with nephrotic syndrome. Kidney Int. 1985;27:544–52.PubMedGoogle Scholar
  6. 6.
    Habib R, Kleinknecht C. The primary nephrotic syndrome of childhood. Classification and clinicopathologic study of 406 cases. In: Sommers SC, editor. Pathology annual. New York: Appleton-Century-Crofts; 1971. p. 417–74.Google Scholar
  7. 7.
    Cameron JS. Histology, protein clearances, and response to treatment in the nephrotic syndrome. BMJ. 1968;4:352–6.PubMedCentralPubMedGoogle Scholar
  8. 8.
    White RHR, Glasgow EF, Mills RJ. Clinicopathological study of nephrotic syndrome in childhood. Lancet. 1970;1:1353–9.PubMedGoogle Scholar
  9. 9.
    Rapola J. Congenital nephrotic syndrome. Pediatr Nephrol. 1987;1:441–6.PubMedGoogle Scholar
  10. 10.
    Antignac C. Molecular basis of steroid-resistant nephrotic syndrome. Nefrologia. 2005;25 Suppl 2:25–8.PubMedGoogle Scholar
  11. 11.
    Ruf RG, Lichtenberger A, Karle SM, et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol. 2004;15:722–32.PubMedGoogle Scholar
  12. 12.
    Giglio S, Provenzano A, Mazzinghi B, et al. Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression. J Am Soc Nephrol. 2014;pii: [Epub ahead of print]Google Scholar
  13. 13.
    Pickering MC, D’Agati VD, Nester CM, et al. C3 glomerulopathy: consensus report. Kidney Int. 2013;84:1079–89.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Zand L, Lorenz EC, Cosio FG, et al. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol. 2014;25:1110–7.PubMedGoogle Scholar
  15. 15.
    Habib R, Gubler M-C, Loirat C, et al. Dense deposit disease: a variant of membranoproliferative glomerulonephritis. Kidney Int. 1975;7:204–15.PubMedGoogle Scholar
  16. 16.
    Cameron JS. Recurrent primary disease and de novo nephritis following renal transplantation. Pediatr Nephrol. 1991;5:412–21.PubMedGoogle Scholar
  17. 17.
    Mustonen J, Pasternack A, Helin H, et al. Renal biopsy in acute renal failure. Am J Nephrol. 1984;4:27–31.PubMedGoogle Scholar
  18. 18.
    Jennette JC, Wilkman AS, Tuttle RH, et al. Frequency and pathologic significance of anti-proteinase 3 and anti-myeloperoxidase antineutrophil cytoplasmic autoantibodies (ANCA) in immune complex glomerulonephritis (Abstract). Lab Invest. 1996;74:167A.Google Scholar
  19. 19.
    Rao JK, Weinberger M, Oddone EZ, et al. The role of antineutrophil cytoplasmic antibody (c-ANCA) testing in the diagnosis of Wegener granulomatosis. A literature review and meta-analysis. Ann Intern Med. 1995;123:925–32.PubMedGoogle Scholar
  20. 20.
    Jennette JC. Antineutrophil cytoplasmic autoantibody-associated disease: a pathologist’s perspective. Am J Kidney Dis. 1991;18:164–70.PubMedGoogle Scholar
  21. 21.
    Jennette JC, Thomas DB. Pauci-immune and antineutrophil cytoplasmic autoantibody-mediated crescentic glomerulonephritis and vasculitis. In: Jennette JC, Olsson JL, Silva FG, D’Agati VD, editors. Heptinstall’s pathology of the kidney. 7th ed. Philadelphia: Wolters Kluwer; 2015.Google Scholar
  22. 22.
    McCluskey RT. Lupus nephritis. In: Sommers SC, editor. Kidney pathology decennial 1966–1975. East Norwalk: Appleton-Century-Crofts; 1975. p. 435.Google Scholar
  23. 23.
    Churg J, Sobin LH. Monograph: renal disease: classification and atlas of glomerular diseases. New York: Igaku-Shoin/World Health Organization (WHO); 1982.Google Scholar
  24. 24.
    Weening JJ, D’Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15:241–50.PubMedGoogle Scholar
  25. 25.
    Rush PJ, Baumal R, Shore A, et al. Correlation of renal histology with outcome in children with lupus nephritis. Kidney Int. 1986;29:1066–71.PubMedGoogle Scholar
  26. 26.
    Schwartz MM, Bernstein J, Hill GS, Lupus Nephritis Collaborative Study Group, et al. Predictive value of renal pathology in diffuse proliferative lupus glomerulonephritis. Kidney Int. 1989;36:891–6.PubMedGoogle Scholar
  27. 27.
    Giannico G, Fogo AB. Lupus nephritis: is the kidney biopsy currently necessary in the management of lupus nephritis? Clin J Am Soc Nephrol. 2013;8:138–45.PubMedGoogle Scholar
  28. 28.
    Remuzzi G, Ruggenenti P, Perico N. Chronic renal diseases: renoprotective benefits of renin-angiotensin system inhibition. Ann Intern Med. 2002;136:604–15.PubMedGoogle Scholar
  29. 29.
    van de Heuvel LPWJ, Schröder CH, Savage COS, et al. The development of anti-glomerular basement membrane nephritis in two children with Alport syndrome after renal transplantation: characterization of the antibody target. Pediatr Nephrol. 1989;3:406–13.Google Scholar
  30. 30.
    Savige J, Gregory M, Gross O, Kashtan C, Ding J, Flinter F. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol. 2013;24:364–735.PubMedGoogle Scholar
  31. 31.
    Kark RM. Renal biopsy. JAMA. 1968;205:220–6.PubMedGoogle Scholar
  32. 32.
    Gault MH, Muehrcke RC. Renal biopsy: current views and controversies. Nephron. 1983;34:1–34.PubMedGoogle Scholar
  33. 33.
    Madaio MP. Renal biopsy. Kidney Int. 1990;38:529–43.PubMedGoogle Scholar
  34. 34.
    Walker PD, Cavallo T, Bonsib SM, Ad Hoc Committee on Renal Biopsy Guidelines of the Renal Pathology Society. Practice guidelines for the renal biopsy. Mod Pathol. 2004;17:1555–63.PubMedGoogle Scholar
  35. 35.
    de Chadarevian J-P, Kaplan BS. The kidney biopsy. In: Barakat AY, editor. Renal disease in children, Clinical evaluation and diagnosis. New York: Springer; 1990. p. 117–32.Google Scholar
  36. 36.
    Greenbaum LA, Simckes AM, McKenney D, et al. Pediatric biopsy of a single native kidney. Pediatr Nephrol. 2000;15:66–9.PubMedGoogle Scholar
  37. 37.
    Shidham GB, Siddiqi N, Beres JA, Logan B, Nagaraja HN, Shidham SG, Piering WF. Clinical risk factors associated with bleeding after native kidney biopsy. Nephrology. 2005;10:305–10.PubMedGoogle Scholar
  38. 38.
    Wiseman DA, Hawkins R, Numerow LM, et al. Percutaneous renal biopsy utilizing real time, ultrasonic guidance and a semiautomated biopsy device. Kidney Int. 1990;38:347–9.PubMedGoogle Scholar
  39. 39.
    Donovan KL, Thomas DM, Wheeler DC, et al. Experience with a new method for percutaneous renal biopsy. Nephrol Dial Transplant. 1991;6:731–3.PubMedGoogle Scholar
  40. 40.
    Oberholzer M, Trohorst E, Perret E, et al. Minimum sample size of kidney biopsies for semiquantitative and quantitative evaluation. Nephron. 1983;34:192–5.PubMedGoogle Scholar
  41. 41.
    Simckes AM, Blowey DL, Gyves KM, Alon US. Success and safety of same-day kidney biopsy in children and adolescents. Pediatr Nephrol. 2000;14:946–52.PubMedGoogle Scholar
  42. 42.
    Sinha MD, Lewis MA, Bradbury MG, Webb NJA. Percutaneous real-time ultrasound-guided renal biopsy by automated biopsy gun in children: safety and complications. J Nephrol. 2006;19:41–4.PubMedGoogle Scholar
  43. 43.
    Sweeney C, Geary DF, Hebert D, Robinson L, Langlois V. Outpatient pediatric renal transplant biopsy – is it safe? Pediatr Transplant. 2006;10:159–61.PubMedGoogle Scholar
  44. 44.
    Häyry P, von Willebrand E. Fine needle aspiration in transplantation pathology. In: Sabe GE, editor. The pathology of organ transplantation. Boston: Butterworths; 1990. p. 285–301.Google Scholar
  45. 45.
    Yussim A, Shapira Z, Shmueli D, et al. Use of modified fine needle aspiration for study of glomerular pathology in human kidneys. Kidney Int. 1990;37:812–7.PubMedGoogle Scholar
  46. 46.
    Al Rasheed SA, Al Mugeiren MM, Abdurrahman MB, et al. The outcome of percutaneous renal biopsy in children: an analysis of 120 consecutive cases. Pediatr Nephrol. 1990;4:600–3.PubMedGoogle Scholar
  47. 47.
    Edelmann Jr CM, Greifer I. A modified technique for percutaneous needle biopsy of the kidney. J Pediatr. 1967;70:81–6.PubMedGoogle Scholar
  48. 48.
    Abdurraman MB. Percutaneous renal biopsy in a developing country: experience with 300 cases. Ann Trop Paediatr. 1984;4:25–30.Google Scholar
  49. 49.
    Karafin L, Kendall AR, Fleisher DS. Urologic complications in percutaneous renal biopsy in children. J Urol. 1970;103:332–5.PubMedGoogle Scholar
  50. 50.
    Carvajal HF, Travis LB, Srivastava RN, et al. Percutaneous renal biopsy in children: an analysis of complications in 890 consecutive biopsies. Tex Rep Biol Med. 1971;29:253–64.PubMedGoogle Scholar
  51. 51.
    Colodny AH, Reckler JM. A safe, simple and reliable method for percutaneous (closed) renal biopsies in children: results in 100 consecutive patients. J Urol. 1975;113:222–4.PubMedGoogle Scholar
  52. 52.
    Welt L. Questionnaire on renal biopsies. JAMA. 1968;205:226.Google Scholar
  53. 53.
    McVicar M, Nicastri AD, Gauthier B. Improved renal biopsy technique in children. NY State J Med. 1974;74:830–1.Google Scholar
  54. 54.
    White RHR. Observations on percutaneous renal biopsy in children. Arch Dis Child. 1963;38:260–6.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Burstein DM, Korbet SM, Schwartz MM. The use of the automatic core biopsy system in percutaneous renal biopsies: a comparative study. Am J Kidney Dis. 1993;22:545–52.PubMedGoogle Scholar
  56. 56.
    Corwin HL, Schwartz MM, Lewis EJ. The importance of sample size in the interpretation of the renal biopsy. Am J Nephrol. 1988;8:85–9.PubMedGoogle Scholar
  57. 57.
    Cohen AH, Nast CC, Adler SG, et al. Clinical utility of kidney biopsies in the diagnosis and management of renal disease. Am J Nephrol. 1989;9:309–15.PubMedGoogle Scholar
  58. 58.
    Haas M. A reevaluation of routine electron microscopy in the examination of native renal biopsies. J Am Soc Nephrol. 1997;8:70–6.PubMedGoogle Scholar
  59. 59.
    Silva FG, Pirani CL. Electron microscopic study of medical diseases of the kidney: update 1988. Mod Pathol. 1988;1:292–315.PubMedGoogle Scholar
  60. 60.
    Beck Jr LH, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:11–21.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Larsen CP, Messias NC, Silva FG, Messias E, Walker PD. Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Mod Pathol. 2013;26:709–15.PubMedGoogle Scholar
  62. 62.
    Furness PN, Boyd S. Electron microscopy and immunocytochemistry in the assessment of renal biopsy specimens: actual and optimal practice. J Clin Pathol. 1996;49:233–7.PubMedCentralPubMedGoogle Scholar
  63. 63.
    D’Agati V, Suh J-I, Carbone L, et al. Pathology of HIV-associated nephropathy: a detailed morphologic and comparative study. Kidney Int. 1989;35:1358–70.PubMedGoogle Scholar
  64. 64.
    Fogo A, Hawkins EP, Berry PL, et al. Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int. 1990;38:115–23.PubMedGoogle Scholar
  65. 65.
    Hurley RM, Drummond KN. Glomerular enlargement in primary renal disease. A quantitative study. Arch Pathol. 1974;97:389–91.PubMedGoogle Scholar
  66. 66.
    Shindo S, Yoshimoto M, Kuriya N, et al. Glomerular basement membrane thickness in recurrent and persistent hematuria and nephrotic syndrome: correlation with sex and age. Pediatr Nephrol. 1988;2:196–9.PubMedGoogle Scholar
  67. 67.
    Morita M, White RHR, Raafat F, et al. Glomerular basement membrane thickness in children. A morphometric study. Pediatr Nephrol. 1988;2:190–5.PubMedGoogle Scholar
  68. 68.
    Chang A, Gibson IW, Cohen AH, Weening JJ, Jennette JC, Fogo AB, Renal Pathology Society. A position paper on standardizing the nonneoplastic kidney biopsy report. Clin J Am Soc Nephrol. 2012;7:1365–8.PubMedGoogle Scholar
  69. 69.
    Kaplan C, Pasternack B, Shah H, et al. Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol. 1975;80:227–34.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kappel B, Olsen S. Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. A quantitative study. Virchows Arch (Pathol Anat). 1980;387:271–7.Google Scholar
  71. 71.
    Smith SM, Hoy WE, Cobb L. Low incidence of glomerulosclerosis in normal kidneys. Arch Pathol Lab Med. 1989;113:1253–6.PubMedGoogle Scholar
  72. 72.
    Nash MA, Greifer I, Olbing H, et al. The significance of focal sclerotic lesions in glomeruli in children. J Pediatr. 1976;88:806–13.PubMedGoogle Scholar
  73. 73.
    Chiang ML, Hawkins EP, Berry PL, et al. Diagnostic and prognostic significance of glomerular epithelial cell vacuolization and podocyte effacement in children with minimal lesion nephrotic syndrome and focal segmental glomerulosclerosis: an ultrastructural study. Clin Nephrol. 1988;30:8–14.PubMedGoogle Scholar
  74. 74.
    Silverstein DM, Craver R. Presenting features and short-term outcome according to pathologic variant in childhood primary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2007;2:700–7.PubMedGoogle Scholar
  75. 75.
    Shankland SJ, Smeets B, Pippin JW, Moeller MJ. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol. 2014;10:158–73.PubMedGoogle Scholar
  76. 76.
    Verani RR, Hawkins EP. Recurrent focal segmental glomerulosclerosis. Am J Nephrol. 1986;6:263–70.PubMedGoogle Scholar
  77. 77.
    Fatima H, Moeller MJ, Smeets B, Yang HC, D’Agati VD, Alpers CE, Fogo AB. Parietal epithelial cell activation marker in early recurrence of FSGS in the transplant. Clin J Am Soc Nephrol. 2012;7:1852–8.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Tøndel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51:767–76.PubMedGoogle Scholar
  79. 79.
    Tøndel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, Svarstad E. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol. 2013;24:137–48.PubMedGoogle Scholar
  80. 80.
    Nasr SH, Markowitz GS, Valeri AM, Yu Z, Chen L, D’Agati VD. Thin basement membrane nephropathy cannot be diagnosed reliably in deparaffinized, formalin-fixed tissue. Nephrol Dial Transplant. 2007;22:1228–32.PubMedGoogle Scholar
  81. 81.
    Yoshikawa N, Matsuyama S, Iijima K, et al. Benign familial hematuria. Arch Pathol Lab Med. 1988;112:794–7.PubMedGoogle Scholar
  82. 82.
    Steffes MW, Barbosa J, Basgen JM, et al. Quantitative glomerular morphology of the normal human kidney. Lab Invest. 1983;49:82–6.PubMedGoogle Scholar
  83. 83.
    Yoshioka K, Hino S, Takemura T, et al. Type IV collagen α5 chain: normal distribution and abnormalities in X-linked Alport syndrome revealed by monoclonal antibody. Am J Pathol. 1994;144:986–96.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Najafian B, Franklin DB, Fogo AB. Acute renal failure and myalgia in a transplant patient. J Am Soc Nephrol. 2007;18:2870–4.PubMedGoogle Scholar
  85. 85.
    Schaefer HM, Helderman JH, Fogo AB. Slow decline in allograft function in a renal transplant patient. Am J Kidney Dis. 2006;48:335–8.PubMedGoogle Scholar
  86. 86.
    Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J, Fidler ME. Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant. 2010;25:1909–15.PubMedGoogle Scholar
  87. 87.
    Fogo AB, Bostad L, Svarstad E, All Members of the International Study Group of Fabry Nephropathy (ISGFN), et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25:2168–77.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Heptinstall RH. Pyelonephritis: pathologic features. In: Heptinstall RH, editor. Pathology of the kidney. 4th ed. Boston: Brown, Little; 1992. p. 1489–561.Google Scholar
  89. 89.
    Verani R, Walker P, Silva FG. Renal cystic disease of infancy: results of histochemical studies. A report of the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol. 1989;3:37–42.PubMedGoogle Scholar
  90. 90.
    Nickeleit V, Mihatsch MJ. Polyomavirus nephropathy in native kidneys and renal allografts: an update on an escalating threat. Transpl Int. 2006;19:960–73.PubMedGoogle Scholar
  91. 91.
    Hawkins EP, Berry PL, Silva FG. Acute tubulointerstitial nephritis in children: clinical, morphologic, and lectin studies. A report of the Southwest Pediatric Nephrology Study Group. Am J Kidney Dis. 1989;14:466–71.PubMedGoogle Scholar
  92. 92.
    Myers BD, Ross J, Newton L, et al. Cyclosporine-associated chronic nephropathy. N Engl J Med. 1984;311:699–705.PubMedGoogle Scholar
  93. 93.
    Mihatsch MJ, Thiel G, Basler V, et al. Morphological patterns in cyclosporine-treated renal transplant recipients. Transplant Proc. 1985;17 Suppl 1:101–16.PubMedGoogle Scholar
  94. 94.
    Böhle A, Mackensen-Haen S, Gise H. Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol. 1987;7:421–33.PubMedGoogle Scholar
  95. 95.
    Striker GE, Shainuck LI, Cutler RE, et al. Structural-functional correlations in renal disease. I. A method for assaying and classifying histopathologic changes in renal disease. Hum Pathol. 1970;1:615–30.PubMedGoogle Scholar
  96. 96.
    Schainuck LI, Striker GE, Cutler RE, et al. Structural-functional correlations in renal disease. II. The correlations. Hum Pathol. 1970;1:631–41.PubMedGoogle Scholar
  97. 97.
    Trainin EB, Gomez-Leon G. Development of renal insufficiency after long-standing steroid-responsive nephrotic syndrome. Int J Pediatr Nephrol. 1982;3:55–8.PubMedGoogle Scholar
  98. 98.
    Southwest Pediatric Nephrology Study Group. Focal segmental glomerulosclerosis in children with idiopathic nephrotic syndrome. A report of the Southwest Pediatric Nephrology Study Group. Kidney Int. 1985;27:442–9.Google Scholar
  99. 99.
    Al-Eisa A, Carter JE, Lirenmann DS, et al. Childhood IgM nephropathy: comparison with minimal change disease. Nephron. 1996;72:37–43.PubMedGoogle Scholar
  100. 100.
    Fogo A, Ichikawa I. Focal segmental glomerulosclerosis: a view and review. Invited Editorial. Pediatr Nephrol. 1996;10:374–91.PubMedGoogle Scholar
  101. 101.
    D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43:368–82.PubMedGoogle Scholar
  102. 102.
    Detwiler RK, Falk RF, Hogan SL, et al. Collapsing glomerulopathy: a clinically and pathologically distinct variant of focal segmental glomerulosclerosis. Kidney Int. 1994;45:1416–24.PubMedGoogle Scholar
  103. 103.
    Stokes MB, Valeri AM, Markowitz GS, D’Agati VD. Cellular focal segmental glomerulosclerosis: clinical and pathologic features. Kidney Int. 2006;70:1783–92.PubMedGoogle Scholar
  104. 104.
    Howie AJ, Brewer DB. Further studies on the glomerular tip lesion: early and late stages and life table analysis. J Pathol. 1985;147:245–55.PubMedGoogle Scholar
  105. 105.
    Stokes MB, Markowitz GS, Lin J, Valeri AM, D’Agati VD. Glomerular tip lesion: a distinct entity within the minimal change disease/focal segmental glomerulosclerosis spectrum. Kidney Int. 2004;65:1690–702.PubMedGoogle Scholar
  106. 106.
    Thomas DB, Franceschini N, Hogan SL, Ten Holder S, Jennette CE, Falk RJ, Jennette JC. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. Kidney Int. 2006;69:920–6.PubMedGoogle Scholar
  107. 107.
    D’Agati VD, Alster JM, Jennette JC, et al. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin J Am Soc Nephrol. 2013;8:399–406.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Iskandar SS, Browning MC, Lorentz WB. C1q nephropathy: a pediatric clinicopathologic study. Am J Kidney Dis. 1991;18:459–65.PubMedGoogle Scholar
  109. 109.
    Vizjak A, Ferluga D, Rozic M, Hvala A, Lindic J, Levart TK, Jurcic V, Jennette JC. Pathology, clinical presentations, and outcomes of C1q nephropathy. J Am Soc Nephrol. 2008;19:2237–44.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Suzuki J, Yoshikawa N, Nakamura H. A quantitative analysis of the glomeruli in focal segmental glomerulosclerosis. Pediatr Nephrol. 1994;8:416–9.PubMedGoogle Scholar
  111. 111.
    Nyberg E, Bohman SO, Berg U. Glomerular volume and renal function in children with different types of the nephrotic syndrome. Pediatr Nephrol. 1994;8:285–9.PubMedGoogle Scholar
  112. 112.
    Fogo AB. Glomerular hypertension, abnormal glomerular growth and progression of renal diseases. Kidney Int. 2000;57 Suppl 75:S15–21.Google Scholar
  113. 113.
    Regel HM, Fillipovic E, Langer B, Poczewki H, Kraxberger I, Bittner RE, Kerjaschki D. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2000;11:403–12.Google Scholar
  114. 114.
    Schmid H, Henger A, Cohen CD, Frach K, Gröne HJ, Schlöndorff D, Kretzler M. Gene expression profiles of podocyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J Am Soc Nephrol. 2003;14:2958–66.PubMedGoogle Scholar
  115. 115.
    Fukuda A, Wickman LT, Venkatareddy MP, Wang SQ, Chowdhury MA, Wiggins JE, Shedden KA, Wiggins RC. Urine podocin: nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant. 2012;27:4079–87.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Wickman L, Afshinnia F, Wang SQ, et al. Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J Am Soc Nephrol. 2013;24:2081–95.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.PubMedGoogle Scholar
  118. 118.
    Kaplan JM, Kim SH, North KN, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–6.PubMedGoogle Scholar
  119. 119.
    Winn MP. 2007 Young Investigator Award: TRP’ing into a new era for glomerular disease. J Am Soc Nephrol. 2008;19(6):1071–5.PubMedGoogle Scholar
  120. 120.
    Hinkes B, Wiggins RC, Gbadegesin R, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.PubMedGoogle Scholar
  121. 121.
    Hinkes BG. NPHS3: new clues for understanding idiopathic nephrotic syndrome. Pediatr Nephrol. 2008;23(6):847–50.PubMedGoogle Scholar
  122. 122.
    Gbadegesin R, Hinkes BG, Hoskins BE, et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant. 2008;23:1291–7.PubMedGoogle Scholar
  123. 123.
    D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med. 2011;365:2398–411.PubMedGoogle Scholar
  124. 124.
    Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol (in press).Google Scholar
  125. 125.
    Khoshnoodi J, Tryggvason K. Congenital nephrotic syndromes. Curr Opin Genet Dev. 2001;11:322–7.PubMedGoogle Scholar
  126. 126.
    Kim JM, Wu H, Green G, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science. 2003;300:1298–300.PubMedGoogle Scholar
  127. 127.
    Hasselbacher K, Wiggins RC, Matejas V, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 2006;70:1008–12.PubMedGoogle Scholar
  128. 128.
    Zenker M, Aigner T, Wendler O, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13:2625–32.PubMedGoogle Scholar
  129. 129.
    Doleris LM, Hill GS, Chedin P, et al. Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney Int. 2000;58:1851–8.PubMedGoogle Scholar
  130. 130.
    Gagnadoux MF, Habib R, Gubler MC, et al. Long-term (15–25 years) outcome of childhood hemolytic-uremic syndrome. Clin Nephrol. 1996;46:39–41.PubMedGoogle Scholar
  131. 131.
    Argyle JC, Hogg RJ, Pysher TJ, et al. A clinicopathological study of 24 children with hemolytic uremic syndrome. Pediatr Nephrol. 1990;4:52–8.PubMedGoogle Scholar
  132. 132.
    Van Buren D, Van Buren CT, Flechner SM, et al. De novo hemolytic uremic syndrome in renal transplant recipients immunosuppressed with cyclosporine. Surgery. 1985;98:54–62.PubMedGoogle Scholar
  133. 133.
    Schwarz A, Krause P-H, Offerman G, et al. Recurrent and de novo renal disease after kidney transplantation with or without cyclosporine A. Am J Kidney Dis. 1991;17:524–31.PubMedGoogle Scholar
  134. 134.
    Lévy M, Gonzalez-Burchard G, Broyer M, et al. Berger’s disease in children: natural history and outcome. Medicine. 1985;64:157–80.PubMedGoogle Scholar
  135. 135.
    Yoshikawa N, Ito H, Nakamura H. IgA nephropathy in children from Japan. Child Nephrol Urol. 1989;9:191–9.Google Scholar
  136. 136.
    Yoshikawa N, Iijima K, Matsuyama S, et al. Repeat renal biopsy in children with IgA nephropathy. Clin Nephrol. 1990;33:160–7.PubMedGoogle Scholar
  137. 137.
    Lee SM, Rao VM, Franklin WA, Schiffer MS, Aronson AJ, Spargo BH, Katz AI. IgA nephropathy: morphologic predictors of progressive renal disease. Hum Pathol. 1982;13:314–22.PubMedGoogle Scholar
  138. 138.
    Haas M. Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244 cases. Am J Kidney Dis. 1997;29:829–42.PubMedGoogle Scholar
  139. 139.
    Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts IS, Cook HT, Troyanov S, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76:546–56.PubMedGoogle Scholar
  140. 140.
    Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran DC, Coppo R, Cook HT, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–45.PubMedGoogle Scholar
  141. 141.
    Roberts IS. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10:445–54.PubMedGoogle Scholar
  142. 142.
    Zeng CH, Le W, Ni Z, et al. A multicenter application and evaluation of the Oxford classification of IgA nephropathy in adult Chinese patients. Am J Kidney Dis. 2012;60:812–20.PubMedGoogle Scholar
  143. 143.
    Le W, Zeng CH, Liu Z, et al. Validation of the Oxford classification of IgA nephropathy for pediatric patients from China. BMC Nephrol. 2012;13:158.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Coppo R, Troyanov S, Bellur S, on Behalf of the VALIGA Study of the ERA-EDTA Immunonephrology Working Group, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014. doi:10.1038/ki.2014.63. [Epub ahead of print]Google Scholar
  145. 145.
    Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Coppo R, Troyanov S, Camilla R, et al. The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int. 2010;77:921–7.PubMedGoogle Scholar
  146. 146.
    Yamabe H, Johnson RJ, Gretch DR, et al. Hepatitis C virus infection and membranoproliferative glomerulonephritis in Japan. J Am Soc Nephrol. 1995;6:220–3.PubMedGoogle Scholar
  147. 147.
    Johnson RJ, Gretch DR, Yamabe H, et al. Membranoproliferative glomerulonephritis associated with hepatitis C virus infection. N Engl J Med. 1993;328:465–70.PubMedGoogle Scholar
  148. 148.
    Nowicki MJ, Welch TR, Ahmad N, et al. Absence of hepatitis B and C viruses in pediatric idiopathic membranoproliferative glomerulonephritis. Pediatr Nephrol. 1995;9:16–8.PubMedGoogle Scholar
  149. 149.
    Galle P, Mahieu P. Electron dense alteration of kidney basement membranes. A renal lesion specific of a systemic disease. Am J Med. 1975;58:749–64.PubMedGoogle Scholar
  150. 150.
    Churg J, Duffy JL, Bernstein J. Identification of dense deposit disease: a report for the international study of kidney diseases in children. Arch Pathol Lab Med. 1979;103:67–72.PubMedGoogle Scholar
  151. 151.
    Walker PD, Ferrario F, Joh K, Bonsib SM. Dense deposit disease is not a membranoproliferative glomerulonephritis. Mod Pathol. 2007;20:605–16.PubMedGoogle Scholar
  152. 152.
    Walker PD. Dense deposit disease: new insights. Curr Opin Nephrol Hypertens. 2007;16:204–12.PubMedGoogle Scholar
  153. 153.
    Schwertz R, de Jong R, Gretz N, et al. Outcome of idiopathic membranoproliferative glomerulonephritis in children. Acta Paediatr. 1996;85:308–12.PubMedGoogle Scholar
  154. 154.
    Braun MC, Stablein DM, Hamiwka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: the North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol. 2005;16:2225–33.PubMedGoogle Scholar
  155. 155.
    Sethi S, Fervenza FC, Zhang Y, Nasr SH, Leung N, Vrana J, Cramer C, Nester CM, Smith RJH. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol. 2011;6:1009–17.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Sethi S, Fervenza FC, Zhang Y, Zand L, Meyer NC, Borsa N, Nasr SH, Smith RJ. Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney Int. 2013;83:293–9.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Anders HJ, Fogo AB. Immunopathology of lupus nephritis. Semin Immunopathol. 2014;36:443–59.PubMedGoogle Scholar
  158. 158.
    Furness PN, Taub N. Interobserver reproducibility and application of the ISN/RPS classification of lupus nephritis-a UK-wide study. Am J Surg Pathol. 2006;30:1030–5.PubMedGoogle Scholar
  159. 159.
    Schwartz MM, Korbet SM, Lewis EJ, Collaborative Study Group. The prognosis and pathogenesis of severe lupus glomerulonephritis. Nephrol Dial Transplant. 2008;23:1298–306.PubMedGoogle Scholar
  160. 160.
    Markowitz GS, D’Agati VD. The ISN/RPS 2003 classification of lupus nephritis: an assessment at 3 years. Kidney Int. 2007;71:491–5.PubMedGoogle Scholar
  161. 161.
    Svobodova B, Honsova E, Ronco P, Tesar V, Debiec H. Kidney biopsy is a sensitive tool for retrospective diagnosis of PLA2R-related membranous nephropathy. Nephrol Dial Transplant. 2013;28:1839–44.PubMedGoogle Scholar
  162. 162.
    Merkel F, Pullig O, Marx M, et al. Course and prognosis of anti-basement membrane antibody (anti-BM-Ab)-mediated disease: report of 35 cases. Nephrol Dial Transplant. 1994;9:372–6.PubMedGoogle Scholar
  163. 163.
    Berden AE, Ferrario F, Hagen EC, et al. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol. 2010;21:1628–36.PubMedGoogle Scholar
  164. 164.
    Kanjanabuch T, Kittikowit W, Eiam-Ong S. An update on acute postinfectious glomerulonephritis worldwide. Nat Rev Nephrol. 2009;5:259–69.PubMedGoogle Scholar
  165. 165.
    Nasr SH, Markowitz GS, Stokes MB, Said SM, Valeri AM, D’Agati VD. Acute postinfectious glomerulonephritis in the modern era: experience with 86 adults and review of the literature. Medicine (Baltimore). 2008;87:21–32.Google Scholar
  166. 166.
    Nasr SH, Share DS, Vargas MT, D’Agati VD, Markowitz GS. Acute poststaphylococcal glomerulonephritis superimposed on diabetic glomerulosclerosis. Kidney Int. 2007;71:1317–21.PubMedGoogle Scholar
  167. 167.
    Ellis EN, Pysher TJ. Renal disease in adolescents with type I diabetes mellitus: a report of the Southwest Pediatric Nephrology Study Group. Am J Kidney Dis. 1993;22:783–90.PubMedGoogle Scholar
  168. 168.
    Tervaert Tervaert TW, Mooyaart AL, Amann K, Renal Pathology Society, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.Google Scholar
  169. 169.
    Ito S, Hataya H, Ikeda M, et al. Alport syndrome-like basement membrane changes in Frasier syndrome: an electron microscopy study. Am J Kidney Dis. 2003;41:1110–5.PubMedGoogle Scholar
  170. 170.
    Pirson Y. Making the diagnosis of Alport syndrome. Kidney Int. 1999;56:760–75.PubMedGoogle Scholar
  171. 171.
    Nasr SH, Markowitz GS, Goldstein CS, Fildes RD, D’Agati VD. Hereditary nephritis mimicking immune complex-mediated glomerulonephritis. Hum Pathol. 2006;37:547–54.PubMedGoogle Scholar
  172. 172.
    Buzza M, Wang YY, Dagher H, et al. COL4A4 mutation in thin basement membrane disease previously described in Alport syndrome. Kidney Int. 2001;60:480–3.PubMedGoogle Scholar
  173. 173.
    Haas M. Thin glomerular basement membrane nephropathy: incidence in 3471 consecutive renal biopsies examined by electron microscopy. Arch Pathol Lab Med. 2006;130:699–706.PubMedGoogle Scholar
  174. 174.
    Haas M. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis. Arch Pathol Lab Med. 2009;133:224–32.PubMedGoogle Scholar
  175. 175.
    Gauthier B, Trachtman H, Frank R, et al. Familial thin basement membrane nephropathy in children with asymptomatic microhematuria. Nephron. 1989;51:502–8.PubMedGoogle Scholar
  176. 176.
    Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339:69–75.PubMedGoogle Scholar
  177. 177.
    Ikoma M, Kawamura T, Fogo A, et al. Cause of variable therapeutic efficiency of angiotensin converting enzyme inhibitor on the glomerular mesangial lesions. Kidney Int. 1991;40:291–301.Google Scholar
  178. 178.
    Yang HC, Liu SJ, Fogo AB. Kidney regeneration in mammals. Nephron Exp Nephrol. 2014;126:50–3.PubMedGoogle Scholar
  179. 179.
    Pichaiwong W, Hudkins KL, Wietecha T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol. 2013;24:1088–102.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Austin III HA, Boumpas DT, Vaughan EM, et al. High-risk features of lupus nephritis: importance of race and clinical and histological factors in 166 patients. Nephrol Dial Transplant. 1995;10:1620–8.PubMedGoogle Scholar
  181. 181.
    Baqi N, Moazami S, Singh A, et al. Lupus nephritis in children: a longitudinal study of prognostic factors and therapy. J Am Soc Nephrol. 1996;7:924–9.PubMedGoogle Scholar
  182. 182.
    Hill GS, Delahousse M, Nochy D, Tomkiewicz E, Remy P, Mignon F, Mery JP. A new morphologic index for the evaluation of renal biopsies in lupus nephritis. Kidney Int. 2000;58:1160–73.PubMedGoogle Scholar
  183. 183.
    Katafuchi R, Oh Y, Hori K, et al. An important role of glomerular segmental lesions on progression of IgA nephropathy: a multivariate analysis. Clin Nephrol. 1994;41:191–8.PubMedGoogle Scholar
  184. 184.
    Hogg RJ, Silva FG, Wyatt RJ, et al. Prognostic indicators in children with IgA nephropathy: report of the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol. 1994;8:15–20.PubMedGoogle Scholar
  185. 185.
    Andreoli SP, Yum MN, Bergstein JM. IgA nephropathy in children: significance of glomerular basement membrane deposition of IgA. Am J Nephrol. 1986;6:28–33.PubMedGoogle Scholar
  186. 186.
    Hsu H-C, Wu C-Y, Lin C-Y, et al. Membranous nephropathy in 52 hepatitis B surface antigen (HBsAg) carrier children in Taiwan. Kidney Int. 1989;36:1103–7.PubMedGoogle Scholar
  187. 187.
    Colvin RB, Cohen AH, Saiontz C, et al. Evaluation of pathologic criteria for acute renal allograft rejection: reproducibility, sensitivity, and clinical correlation. J Am Soc Nephrol. 1997;8:1930–41.PubMedGoogle Scholar
  188. 188.
    Racusen LC, Solez K, Colvin RB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999;55:713–23.PubMedGoogle Scholar
  189. 189.
    Haas M, Sis B, Racusen LC, Banff meeting report writing committee, et al. Banff meeting report writing committee. Banff 2013 meeting report: inclusion of C4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant. 2014;14:272–83.PubMedGoogle Scholar
  190. 190.
    Lefaucheur C, Loupy A, Vernerey D, et al. Antibody-mediated vascular rejection of kidney allografts: a population-based study. Lancet. 2013;381:313–9.PubMedGoogle Scholar
  191. 191.
    Rush D, Jeffery J, Trpkov K, et al. Effect of subclinical rejection on renal allograft histology and function at 6 months. Transplant Proc. 1996;28:494–5.PubMedGoogle Scholar
  192. 192.
    Strehlau J, Pavlakis M, Lipman M, et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci U S A. 1997;94:695–700.PubMedCentralPubMedGoogle Scholar
  193. 193.
    Mauiyyedi S, Crespo M, Collins AB, et al. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol. 2002;13:779–87.PubMedGoogle Scholar
  194. 194.
    Bohmig GA, Exner M, Habicht A, et al. Capillary C4d deposition in kidney allografts: a specific marker of alloantibody-dependent graft injury. J Am Soc Nephrol. 2002;13:1091–9.PubMedGoogle Scholar
  195. 195.
    Haas M. Pathologic features of antibody-mediated rejection in renal allografts: an expanding spectrum. Curr Opin Nephrol Hypertens. 2012;21:264–71.PubMedGoogle Scholar
  196. 196.
    Drachenberg CB, Steinberger E, Hoehn-Saric E, et al. Specificity of intertubular capillary changes: comparative ultrastructural studies in renal allografts and native kidneys. Ultrastruct Pathol. 1997;21:227–33.PubMedGoogle Scholar
  197. 197.
    Mihatsch MJ, Ryffel B, Gudat F. The differential diagnosis between rejection and cyclosporine toxicity. Kidney Int. 1995;48 Suppl 52:S63–9.Google Scholar
  198. 198.
    Meehan SM, Pascual M, Williams WW, et al. De novo collapsing glomerulopathy in renal allografts. Transplantation. 1998;65:1192–7.PubMedGoogle Scholar
  199. 199.
    Ponticelli C, Glassock RJ. Posttransplant recurrence of primary glomerulonephritis. Clin J Am Soc Nephrol. 2010;5:2363–72.PubMedGoogle Scholar
  200. 200.
    Habib R, Gagnadoux M-F, Broyer M. Recurrent glomerulonephritis in transplanted children. Contrib Nephrol. 1987;55:123–35.PubMedGoogle Scholar
  201. 201.
    Goral S, Ynares C, Shappell SB, Snyder S, Feurer ID, Kazancioglu R, Fogo AB, Helderman JH. Recurrent lupus nephritis in renal transplant recipients revisited: it is not rare. Transplantation. 2003;75:651–6.PubMedGoogle Scholar
  202. 202.
    Patel K, Hirsch J, Beck L, Herlitz L, Radhakrishnan J. De novo membranous nephropathy in renal allograft associated with antibody-mediated rejection and review of the literature. Transplant Proc. 2013;45:3424–8.PubMedGoogle Scholar
  203. 203.
    Hariharan S, Smith RD, Viero R, First MR. Diabetic nephropathy after renal transplantation. Clinical and pathologic features. Transplantation. 1996;62:632–5.PubMedGoogle Scholar
  204. 204.
    Bhalla V, Nast CC, Stollenwerk N, Tran S, Barba L, Kamil ES, Danovitch G, Adler SG. Recurrent and de novo diabetic nephropathy in renal allografts. Transplantation. 2003;75:66–71.PubMedGoogle Scholar
  205. 205.
    Randhawa PS, Magnone M, Jordan M, et al. Renal allograft involvement by Epstein-Barr virus associated with post-transplant lymphoproliferative disease. Am J Surg Pathol. 1996;20:563–71.PubMedGoogle Scholar
  206. 206.
    Smith JM, Dharnidharka VR, Talley L, Martz K, McDonald RA. BK virus nephropathy in pediatric renal transplant recipients: an analysis of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) registry. Clin J Am Soc Nephrol. 2007;2:1037–42.PubMedGoogle Scholar
  207. 207.
    Bracamonte E, Leca N, Smith KD, et al. Tubular basement membrane immune deposits in association with BK polyomavirus nephropathy. Am J Transplant. 2007;7:1552–60.PubMedGoogle Scholar
  208. 208.
    Barnes JL, Milani S. In situ hybridization in the study of the kidney and renal disease. Semin Nephrol. 1995;15:9–28.PubMedGoogle Scholar
  209. 209.
    Sethi S, Vrana JA, Theis JD, Dogan A. Mass spectrometry based proteomics in the diagnosis of kidney disease. Curr Opin Nephrol Hypertens. 2013;22:273–80.PubMedGoogle Scholar
  210. 210.
    Schaub S, Rush D, Wilkins J, et al. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol. 2004;15:219–27.PubMedGoogle Scholar
  211. 211.
    Devarajan P. Proteomics for biomarker discovery in acute kidney injury. Semin Nephrol. 2007;27:637–51.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Wang D, Sun W. Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome. Proteomics. 2014;14:1922–32.PubMedGoogle Scholar
  213. 213.
    Sis B, Halloran PF. Endothelial transcripts uncover a previously unknown phenotype: C4d-negative antibody-mediated rejection. Curr Opin Organ Transplant. 2010;15:42–8.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations