Advertisement

Translational Research Methods: The Value of Animal Models in Renal Research

  • Jordan Kreidberg
Living reference work entry

Abstract

The use of animal models has been an essential aspect of nearly all areas of nephrological research since its earliest days. Research on kidney formation and malformation, physiology and pathophysiology, immunological injury, and tolerance or transplant rejection all depend on the use of animal experimentation. This chapter will emphasize genetic approaches that utilize animals, as this area has shown the great progress in the development of novel technologies that have had great impact in all areas of nephrology.

Keywords

Embryonic Stem Cell Bacterial Artificial Chromosome Inbred Strain Polycystic Kidney Disease Microsatellite Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91.PubMedGoogle Scholar
  2. 2.
    Torres M, Gomez PE, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121(12):4057–65.PubMedGoogle Scholar
  3. 3.
    Moore MW, Klein RD, Farinas I, Sauer H, Armani M, Philips H, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.PubMedGoogle Scholar
  4. 4.
    Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.PubMedGoogle Scholar
  5. 5.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal aegenesis and absence of enteric ganglions in mice lacking GDNF. Nature. 1996;382:70–4.PubMedGoogle Scholar
  6. 6.
    Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development. 1998;125(21):4225–34.PubMedGoogle Scholar
  7. 7.
    Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995;9(22):2795–807.PubMedGoogle Scholar
  8. 8.
    Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995;9(22):2808–20.PubMedGoogle Scholar
  9. 9.
    Robertson EJ. Isolation of embryonic stem cells. In: Robertson EJ, editor. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press; 1987.Google Scholar
  10. 10.
    Bradley A. Production and analysis of chimeric mice. In: Robertson EJ, editor. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press; 1987. p. 113–51.Google Scholar
  11. 11.
    Thomas KR, Capecchi MR. Targeting of genes to specific sites in the mammalian genome. Cold Spring Harb Symp Quant Biol. 1986;51(1):1101–13.PubMedGoogle Scholar
  12. 12.
    Thomas KR, Deng C, Capecchi MR. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol. 1992;12(7):2919–23.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989;5(3):70–6.PubMedGoogle Scholar
  14. 14.
    Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992;89(15):6861–5.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods. 1998;14(4):381–92.PubMedGoogle Scholar
  16. 16.
    Stricklett PK, Nelson RD, Kohan DE. The Cre/loxP system and gene targeting in the kidney. Am J Physiol. 1999;276(5 Pt 2):F651–7.PubMedGoogle Scholar
  17. 17.
    Furth PA, St. Onge L, Boger H, Gruss P, Gossen M, Kistner A, et al. Temporal control of gene expression in transgenic mice by a tetracycline responsive promoter. Proc Natl Acad Sci U S A. 1994;91:9302–6.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res. 2001;89(1):20–5.PubMedGoogle Scholar
  19. 19.
    Verrou C, Zhang Y, Zurn C, Schamel WW, Reth M. Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem. 1999;380(12):1435–8.PubMedGoogle Scholar
  20. 20.
    Gawlik A, Quaggin SE. Conditional gene targeting in the kidney. Curr Mol Med. 2005;5(5):527–36.PubMedGoogle Scholar
  21. 21.
    Park JS, Valerius MT, McMahon AP. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development. 2007;134(13):2533–9.PubMedGoogle Scholar
  22. 22.
    Moeller MJ, Sanden SK, Soofi A, Wiggins RC, Holzman LB. Two gene fragments that direct podocyte-specific expression in transgenic mice. J Am Soc Nephrol. 2002;13(6):1561–7.PubMedGoogle Scholar
  23. 23.
    Wong MA, Cui S, Quaggin SE. Identification and characterization of a glomerular-specific promoter from the human nephrin gene. Am J Physiol Renal Physiol. 2000;279:F1027–32.PubMedGoogle Scholar
  24. 24.
    Eremina V, Wong MA, Cui S, Schwartz L, Quaggin SE. Glomerular-specific gene excision in vivo. J Am Soc Nephrol. 2002;13:788–93.PubMedGoogle Scholar
  25. 25.
    Li H, Zhou X, Davis DR, Xu D, Sigmund CD. An androgen-inducible proximal tubule-specific Cre recombinase transgenic model. Am J Physiol Renal Physiol. 2008;294(6):F1481–6.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Dworniczak B, Skryabin B, Tchinda J, Heuck S, Seesing FJ, Metzger D, et al. Inducible Cre/loxP recombination in the mouse proximal tubule. Nephron Exp Nephrol. 2007;106(1):e11–20.PubMedGoogle Scholar
  27. 27.
    Rubera I, Poujeol C, Bertin G, Hasseine L, Counillon L, Poujeol P, et al. Specific Cre/Lox recombination in the mouse proximal tubule. J Am Soc Nephrol. 2004;15(8):2050–6.PubMedGoogle Scholar
  28. 28.
    Stricklett PK, Taylor D, Nelson RD, Kohan DE. Thick ascending limb-specific expression of Cre recombinase. Am J Physiol Renal Physiol. 2003;285(1):F33–9.PubMedGoogle Scholar
  29. 29.
    Marose TD, Merkel CE, McMahon AP, Carroll TJ. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol. 2008;314(1):112–26.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Stricklett PK, Nelson RD, Kohan DE. Targeting collecting tubules using the aquaporin-2 promoter. Exp Nephrol. 1999;7(1):67–74.PubMedGoogle Scholar
  31. 31.
    Li WL, Cheng X, Tan XH, Zhang JS, Sun YS, Chen L, et al. Endothelial cell-specific expression of Cre recombinase in transgenic mice. Yi Chuan Xue Bao. 2005;32(9):909–15.PubMedGoogle Scholar
  32. 32.
    Licht AH, Raab S, Hofmann U, Breier G. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Dev Dyn. 2004;229(2):312–8.PubMedGoogle Scholar
  33. 33.
    Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, et al. The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol. 2003;162(6):1111–22.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005;33(4):e36.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Zhang XM, Huang JD. Combination of overlapping bacterial artificial chromosomes by a two-step recombinogenic engineering method. Nucleic Acids Res. 2003;31(15):e81.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol. 2003;21(4):443–7.PubMedGoogle Scholar
  37. 37.
    Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review].PubMedCentralPubMedGoogle Scholar
  38. 38.
    Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Making designer mutants in model organisms. Development. 2014;141(21):4042–54. [Review].PubMedCentralPubMedGoogle Scholar
  39. 39.
    Ramalingam S, Annaluru N, Chandrasegaran S. A CRISPR way to engineer the human genome. Genome Biol. 2013;14(2):107. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedGoogle Scholar
  40. 40.
    Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10(10):957–63. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].PubMedCentralPubMedGoogle Scholar
  41. 41.
    Yang L, Mali P, Kim-Kiselak C, Church G. CRISPR-Cas-mediated targeted genome editing in human cells. Methods Mol Biol. 2014;1114:245–67. [Research Support, N.I.H., Extramural].PubMedGoogle Scholar
  42. 42.
    Cheng JC, Moore TB, Sakamoto KM. RNA interference and human disease. Mol Genet Metab. 2003;80(1–2):121–8.PubMedGoogle Scholar
  43. 43.
    Campbell TN, Choy FY. RNA interference: past, present and future. Curr Issues Mol Biol. 2005;7(1):1–6.PubMedGoogle Scholar
  44. 44.
    Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell. 2004;117(1):1–3.PubMedGoogle Scholar
  45. 45.
    Shukla V, Coumoul X, Deng CX. RNAi-based conditional gene knockdown in mice using a U6 promoter driven vector. Int J Biol Sci. 2007;3(2):91–9.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Coumoul X, Deng CX. RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie. 2006;88(6):637–43.PubMedGoogle Scholar
  47. 47.
    Vintersten K, Testa G, Naumann R, Anastassiadis K, Stewart AF. Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes. Methods Mol Biol. 2008;415:83–100.PubMedGoogle Scholar
  48. 48.
    Feng G, Lu J, Gross J. Generation of transgenic mice. Methods Mol Med. 2004;99:255–67.PubMedGoogle Scholar
  49. 49.
    Isola LM, Gordon JW. Transgenic animals: a new era in developmental biology and medicine. Biotechnology. 1991;16:3–20.PubMedGoogle Scholar
  50. 50.
    Gordon JW, Ruddle FH. Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol. 1983;101:411–33.PubMedGoogle Scholar
  51. 51.
    Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, et al. A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res. 1993;21(20):4783–7.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Nottle MB, Nagashima H, Verma PJ, Du ZT, Grupen CG, Ashman RJ, et al. Developments in transgenic techniques in pigs. J Reprod Fertil Suppl. 1997;52:237–44.PubMedGoogle Scholar
  53. 53.
    Filipiak WE, Saunders TL. Advances in transgenic rat production. Transgenic Res. 2006;15(6):673–86.PubMedGoogle Scholar
  54. 54.
    Majumdar A, Drummond IA. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev Genet. 1999;24(3–4):220–9.PubMedGoogle Scholar
  55. 55.
    Drummond I. Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol. 2003;13(7):357–65.PubMedGoogle Scholar
  56. 56.
    Hostetter CL, Sullivan-Brown JL, Burdine RD. Zebrafish pronephros: a model for understanding cystic kidney disease. Dev Dyn. 2003;228(3):514–22.PubMedGoogle Scholar
  57. 57.
    Drummond IA. Zebrafish kidney development. Methods Cell Biol. 2004;76:501–30.PubMedGoogle Scholar
  58. 58.
    Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development. 2004;131(16):4085–93. [Research Support, U.S. Gov’t, P.H.S.].PubMedGoogle Scholar
  59. 59.
    Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV. Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol. 2005;288(5):F923–9.PubMedGoogle Scholar
  60. 60.
    Hentschel DM, Mengel M, Boehme L, Liebsch F, Albertin C, Bonventre JV, et al. Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. Am J Physiol Renal Physiol. 2007;293(5):F1746–50.PubMedGoogle Scholar
  61. 61.
    Davis EE, Frangakis S, Katsanis N. Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta. 2014;1842(10):1960–70. [Review].PubMedGoogle Scholar
  62. 62.
    Niederriter AR, Davis EE, Golzio C, Oh EC, Tsai IC, Katsanis N. In vivo modeling of the morbid human genome using Danio rerio. J Vis Exp. 2013;(78):e50338. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Video-Audio Media].Google Scholar
  63. 63.
    Fishman MC. Zebrafish genetics: the enigma of arrival. Proc Natl Acad Sci U S A. 1999;96(19):10554–6.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics. 1999;58(3):219–32.PubMedGoogle Scholar
  65. 65.
    Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet. 1998;18(4):338–43.PubMedGoogle Scholar
  66. 66.
    Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development. 1998;125(23):4655–67.PubMedGoogle Scholar
  67. 67.
    Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129(24):5839–46.PubMedGoogle Scholar
  68. 68.
    Briggs JP. The zebrafish: a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol. 2002;282(1):R3–9.PubMedGoogle Scholar
  69. 69.
    Serluca FC, Fishman MC. Pre-pattern in the pronephric kidney field of zebrafish. Development. 2001;128(12):2233–41.PubMedGoogle Scholar
  70. 70.
    Majumdar A, Drummond IA. The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol. 2000;222(1):147–57.PubMedGoogle Scholar
  71. 71.
    Drummond IA. The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol. 2000;14(5):428–35.PubMedGoogle Scholar
  72. 72.
    Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development. 2000;127(10):2089–98.PubMedGoogle Scholar
  73. 73.
    Vogel G. GENOMICS: Sanger will sequence Zebrafish genome. Science. 2000;290(5497):1671b.PubMedGoogle Scholar
  74. 74.
    Stickney HL, Schmutz J, Woods IG, Holtzer CC, Dickson MC, Kelly PD, et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res. 2002;12(12):1929–34.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Bradley KM, Elmore JB, Breyer JP, Yaspan BL, Jessen JR, Knapik EW, et al. A major zebrafish polymorphism resource for genetic mapping. Genome Biol. 2007;8(4):R55.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Damert A, Kusserow H. Generation of transgenic mice by pronuclear injection. Methods Mol Med. 2003;89:513–28.PubMedGoogle Scholar
  77. 77.
    Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins N. Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci U S A. 1996;93(15):7777–82.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Gaiano N, Hopkins N. Introducing genes into zebrafish. Biochim Biophys Acta. 1996;1288(1):O11–4.PubMedGoogle Scholar
  79. 79.
    Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug 2nd RG, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491(7422):114–8. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedGoogle Scholar
  80. 80.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedGoogle Scholar
  81. 81.
    Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. 2012;40(16):8001–10. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedGoogle Scholar
  82. 82.
    Shin J, Chen J, Solnica-Krezel L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 2014;141(19):3807–18.PubMedGoogle Scholar
  83. 83.
    Amsterdam A, Hopkins N. Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol. 1999;60:87–98.PubMedGoogle Scholar
  84. 84.
    Talbot WS, Hopkins N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev. 2000;14(7):755–62.PubMedGoogle Scholar
  85. 85.
    Amsterdam A, Hopkins N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 2006;22(9):473–8.PubMedGoogle Scholar
  86. 86.
    Draper BW, Morcos PA, Kimmel CB. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis. 2001;30(3):154–6.PubMedGoogle Scholar
  87. 87.
    Scholpp S, Brand M. Morpholino-induced knockdown of zebrafish engrailed genes eng2 and eng3 reveals redundant and unique functions in midbrain–hindbrain boundary development. Genesis. 2001;30(3):129–33.PubMedGoogle Scholar
  88. 88.
    Hrabe de Angelis M, Strivens M. Large-scale production of mouse phenotypes: the search for animal models for inherited diseases in humans. Brief Bioinform. 2001;2(2):170–80.PubMedGoogle Scholar
  89. 89.
    Nolan PM, Peters J, Vizor L, Strivens M, Washbourne R, Hough T, et al. Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm Genome. 2000;11(7):500–6.PubMedGoogle Scholar
  90. 90.
    Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet. 2000;24(3):314–7.PubMedGoogle Scholar
  91. 91.
    Anderson KV. Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet. 2000;16(3):99–102.PubMedGoogle Scholar
  92. 92.
    Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A. Mouse ENU mutagenesis. Hum Mol Genet. 1999;8(10):1955–63.PubMedGoogle Scholar
  93. 93.
    Hrabe de Angelis M, Balling R. Large scale ENU screens in the mouse: genetics meets genomics. Mutat Res. 1998;400(1–2):25–32.PubMedGoogle Scholar
  94. 94.
    Knapik EW. ENU mutagenesis in zebrafish–from genes to complex diseases. Mamm Genome. 2000;11(7):511–9.PubMedGoogle Scholar
  95. 95.
    Beckwith LG, Moore JL, Tsao-Wu GS, Harshbarger JC, Cheng KC. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab Invest. 2000;80(3):379–85.PubMedGoogle Scholar
  96. 96.
    Weinstein BM, Schier AF, Abdelilah S, Malicki J, Solnica-Krezel L, Stemple DL, et al. Hematopoietic mutations in the zebrafish. Development. 1996;123:303–9.PubMedGoogle Scholar
  97. 97.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1–36.PubMedGoogle Scholar
  98. 98.
    Solnica-Krezel L, Schier AF, Driever W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics. 1994;136(4):1401–20.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Dietrich WF, Copeland NG, Gilbert DJ, Miller JC, Jenkins NA, Lander ES. Mapping the mouse genome: current status and future prospects. Proc Natl Acad Sci U S A. 1995;92(24):10849–53.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Brown DM, Matise TC, Koike G, Simon JS, Winer ES, Zangen S, et al. An integrated genetic linkage map of the laboratory rat. Mamm Genome. 1998;9(7):521–30.PubMedGoogle Scholar
  101. 101.
    Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–82.PubMedGoogle Scholar
  102. 102.
    Tsang S, Sun Z, Luke B, Stewart C, Lum N, Gregory M, et al. A comprehensive SNP-based genetic analysis of inbred mouse strains. Mamm Genome. 2005;16(7):476–80.PubMedGoogle Scholar
  103. 103.
    Grant SF, Hakonarson H. Microarray technology and applications in the arena of genome-wide association. Clin Chem. 2008;54(7):1116–24.PubMedGoogle Scholar
  104. 104.
    Patil N, Nouri N, McAllister L, Matsukaki H, Ryder T. Single-nucleotide polymorphism genotyping using microarrays. Curr Protoc Hum Genet. 2013;Chapter 2:Unit 2 9.Google Scholar
  105. 105.
    Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol. 2004;2(12):e393.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, et al. The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet. 2003;4(11):911–6.PubMedGoogle Scholar
  107. 107.
    Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet. 2002;31(3):235–6.PubMedGoogle Scholar
  108. 108.
    Pezzolesi MG, Skupien J, Mychaleckyj JC, Warram JH, Krolewski AS. Insights to the genetics of diabetic nephropathy through a genome-wide association study of the GoKinD collection. Semin Nephrol. 2010;30(2):126–40. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].PubMedCentralPubMedGoogle Scholar
  109. 109.
    Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCentralPubMedGoogle Scholar
  110. 110.
    Malhotra A, Igo Jr RP, Thameem F, Kao WH, Abboud HE, Adler SG, et al. Genome-wide linkage scans for type 2 diabetes mellitus in four ethnically diverse populations-significant evidence for linkage on chromosome 4q in African Americans: the Family Investigation of Nephropathy and Diabetes Research Group. Diabetes Metab Res Rev. 2009;25(8):740–7. [Multicenter Study Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural].PubMedCentralPubMedGoogle Scholar
  111. 111.
    Genovese G, Tonna SJ, Knob AU, Appel GB, Katz A, Bernhardy AJ, et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 2010;78(7):698–704. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedGoogle Scholar
  112. 112.
    Wasser WG, Tzur S, Wolday D, Adu D, Baumstein D, Rosset S, et al. Population genetics of chronic kidney disease: the evolving story of APOL1. J Nephrol. 2012;25(5):603–18. [Research Support, Non-U.S. Gov’t Review].PubMedGoogle Scholar
  113. 113.
    Shlush LI, Bercovici S, Wasser WG, Yudkovsky G, Templeton A, Geiger D, et al. Admixture mapping of end stage kidney disease genetic susceptibility using estimated mutual information ancestry informative markers. BMC Med Genomics. 2010;3:47. [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedGoogle Scholar
  114. 114.
    Tsaih SW, Pezzolesi MG, Yuan R, Warram JH, Krolewski AS, Korstanje R. Genetic analysis of albuminuria in aging mice and concordance with loci for human diabetic nephropathy found in a genome-wide association scan. Kidney Int. 2010;77(3):201–10. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedGoogle Scholar
  115. 115.
    DiPetrillo K, Wang X, Stylianou IM, Paigen B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet. 2005;21(12):683–92.PubMedGoogle Scholar
  116. 116.
    Cuppen E. Haplotype-based genetics in mice and rats. Trends Genet. 2005;21(6):318–22.PubMedGoogle Scholar
  117. 117.
    Guryev V, Smits BM, van de Belt J, Verheul M, Hubner N, Cuppen E. Haplotype block structure is conserved across mammals. PLoS Genet. 2006;2(7):e121.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedGoogle Scholar
  119. 119.
    Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409(6822):928–33. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedGoogle Scholar
  120. 120.
    Wang X, Korstanje R, Higgins D, Paigen B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res. 2004;14(9):1767–72.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Wittenburg H, Lyons MA, Li R, Kurtz U, Wang X, Mossner J, et al. QTL mapping for genetic determinants of lipoprotein cholesterol levels in combined crosses of inbred mouse strains. J Lipid Res. 2006;47(8):1780–90.PubMedGoogle Scholar
  122. 122.
    Flint J, Eskin E. Genome-wide association studies in mice. Nat Rev Genet. 2012;13(11):807–17. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].PubMedCentralPubMedGoogle Scholar
  123. 123.
    Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477(7364):289–94. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedGoogle Scholar
  124. 124.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.PubMedGoogle Scholar
  125. 125.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.PubMedGoogle Scholar
  126. 126.
    Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.PubMedGoogle Scholar
  127. 127.
    Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872–6.PubMedGoogle Scholar
  128. 128.
    Raven P, Fauquet C, Swaminathan MS, Borlaug N, Samper C. Where next for genome sequencing? Science. 2006;311(5760):468.PubMedGoogle Scholar
  129. 129.
    Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006;16(6):545–52.PubMedGoogle Scholar
  130. 130.
    Schmouth JF, Bonaguro RJ, Corso-Diaz X, Simpson EM. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing. PLoS Genet. 2012;8(3):e1002544. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].PubMedCentralPubMedGoogle Scholar
  131. 131.
    Shiozawa M, Provoost AP, van Dokkum RP, Majewski RR, Jacob HJ. Evidence of gene-gene interactions in the genetic susceptibility to renal impairment after unilateral nephrectomy. J Am Soc Nephrol. 2000;11(11):2068–78.PubMedGoogle Scholar
  132. 132.
    Kwitek-Black AE, Jacob HJ. The use of designer rats in the genetic dissection of hypertension. Curr Hypertens Rep. 2001;3(1):12–8.PubMedGoogle Scholar
  133. 133.
    Stoll M, Jacob HJ. Genetic rat models of hypertension: relationship to human hypertension. Curr Hypertens Rep. 2001;3(2):157–64.PubMedGoogle Scholar
  134. 134.
    Stoll M, Cowley Jr AW, Tonellato PJ, Greene AS, Kaldunski ML, Roman RJ, et al. A genomic-systems biology map for cardiovascular function. Science. 2001;294(5547):1723–6.PubMedGoogle Scholar
  135. 135.
    Jacob HJ, Kwitek AE. Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet. 2002;3(1):33–42.PubMedGoogle Scholar
  136. 136.
    Rao GN. Diet and kidney diseases in rats. Toxicol Pathol. 2002;30(6):651–6.PubMedGoogle Scholar
  137. 137.
    Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1033–40.PubMedGoogle Scholar
  138. 138.
    Ishii T, Kuwaki T, Masuda Y, Fukuda Y. Postnatal development of blood pressure and baroreflex in mice. Auton Neurosci. 2001;94(1–2):34–41.PubMedGoogle Scholar
  139. 139.
    Gross V, Plehm R, Tank J, Jordan J, Diedrich A, Obst M, et al. Heart rate variability and baroreflex function in AT2 receptor-disrupted mice. Hypertension. 2002;40(2):207–13.PubMedGoogle Scholar
  140. 140.
    Rokosh DG, Simpson PC. Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci U S A. 2002;99(14):9474–9.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Besnard S, Bakouche J, Lemaigre-Dubreuil Y, Mariani J, Tedgui A, Henrion D. Smooth muscle dysfunction in resistance arteries of the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circ Res. 2002;90(7):820–5.PubMedGoogle Scholar
  142. 142.
    Vecchione C, Fratta L, Rizzoni D, Notte A, Poulet R, Porteri E, et al. Cardiovascular influences of alpha1b-adrenergic receptor defect in mice. Circulation. 2002;105(14):1700–7.PubMedGoogle Scholar
  143. 143.
    Gross V, Luft FC. Adapting renal and cardiovascular physiology to the genetically hypertensive mouse. Semin Nephrol. 2002;22(2):172–9.PubMedGoogle Scholar
  144. 144.
    Holschneider DP, Scremin OU, Roos KP, Chialvo DR, Chen K, Shih JC. Increased baroreceptor response in mice deficient in monoamine oxidase A and B. Am J Physiol Heart Circ Physiol. 2002;282(3):H964–72.PubMedGoogle Scholar
  145. 145.
    Edouga D, Hugueny B, Gasser B, Bussieres L, Laborde K. Recovery after relief of fetal urinary obstruction: morphological, functional and molecular aspects. Am J Physiol Renal Physiol. 2001;281(1):F26–37.PubMedGoogle Scholar
  146. 146.
    Kitagawa H, Pringle KC, Zuccollo J, Koike J, Nakada K, Ikoma M, et al. Glomerular size in renal dysplasia secondary to obstructive uropathy: a further exploration of the fetal lamb model. J Pediatr Surg. 2000;35(11):1651–5.PubMedGoogle Scholar
  147. 147.
    Kitagawa H, Pringle KC, Zucollo J, Koike J, Nakada K, Moriya H, et al. Early fetal obstructive uropathy produces Potter’s syndrome in the lamb. J Pediatr Surg. 2000;35(11):1549–53.PubMedGoogle Scholar
  148. 148.
    Smith LM, Ervin MG, Wada N, Ikegami M, Polk DH, Jobe AH. Antenatal glucocorticoids alter postnatal preterm lamb renal and cardiovascular responses to intravascular volume expansion. Pediatr Res. 2000;47(5):622–7.PubMedGoogle Scholar
  149. 149.
    Kitagawa H, Pringle KC, Zuccolo J, Stone P, Nakada K, Kawaguchi F, et al. The pathogenesis of dysplastic kidney in a urinary tract obstruction in the female fetal lamb. J Pediatr Surg. 1999;34(11):1678–83.PubMedGoogle Scholar
  150. 150.
    Wang J, Rose JC. Developmental changes in renal renin mRNA half-life and responses to stimulation in fetal lambs. Am J Physiol. 1999;277(4 Pt 2):R1130–5.PubMedGoogle Scholar
  151. 151.
    Gimonet V, Bussieres L, Medjebeur AA, Gasser B, Lelongt B, Laborde K. Nephrogenesis and angiotensin II receptor subtypes gene expression in the fetal lamb. Am J Physiol. 1998;274(6 Pt 2):F1062–9.PubMedGoogle Scholar
  152. 152.
    Nguyen HT, Kogan BA. Renal hemodynamic changes after complete and partial unilateral ureteral obstruction in the fetal lamb. J Urol. 1998;160(3 Pt 2):1063–9.PubMedGoogle Scholar
  153. 153.
    Wang J, Perez FM, Rose JC. Developmental changes in renin-containing cells from the ovine fetal kidney. J Soc Gynecol Investig. 1997;4(4):191–6.PubMedGoogle Scholar
  154. 154.
    Berry LM, Polk DH, Ikegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol. 1997;272(6 Pt 2):R1972–9.PubMedGoogle Scholar
  155. 155.
    Matsell DG, Bennett T, Bocking AD. Characterization of fetal ovine renal dysplasia after mid-gestation ureteral obstruction. Clin Invest Med. 1996;19(6):444–52.PubMedGoogle Scholar
  156. 156.
    Peters CA, Gaertner RC, Carr MC, Mandell J. Fetal compensatory renal growth due to unilateral ureteral obstruction. J Urol. 1993;150(2 Pt 2):597–600.PubMedGoogle Scholar
  157. 157.
    Peters CA, Docimo SG, Luetic T, Reid LM, Retik AB, Mandell J. Effect of in utero vesicostomy on pulmonary hypoplasia in the fetal lamb with bladder outlet obstruction and oligohydramnios: a morphometric analysis. J Urol. 1991;146(4):1178–83.PubMedGoogle Scholar
  158. 158.
    Rosines E, Sampogna RV, Johkura K, Vaughn DA, Choi Y, Sakurai H, et al. Staged in vitro reconstitution and implantation of engineered rat kidney tissue. Proc Natl Acad Sci U S A. 2007;104(52):20938–43.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Fissell WH. Developments towards an artificial kidney. Expert Rev Med Devices. 2006;3(2):155–65.PubMedGoogle Scholar
  160. 160.
    Hammerman MR. Tissue engineering the kidney. Kidney Int. 2003;63(4):1195–204.PubMedGoogle Scholar
  161. 161.
    Chugh S, Yuan H, Topham PS, Haydar SA, Mittal V, Taylor GA, et al. Aminopeptidase A: a nephritogenic target antigen of nephrotoxic serum. Kidney Int. 2001;59(2):601–13. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedGoogle Scholar
  162. 162.
    Cook HT, Khan SB, Allen A, Bhangal G, Smith J, Lobb RR, et al. Treatment with an antibody to VLA-1 integrin reduces glomerular and tubulointerstitial scarring in a rat model of crescentic glomerulonephritis. Am J Pathol. 2002;161(4):1265–72.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Hiromura K, Haseley LA, Zhang P, Monkawa T, Durvasula R, Petermann AT, et al. Podocyte expression of the CDK-inhibitor p57 during development and disease. Kidney Int. 2001;60(6):2235–46.PubMedGoogle Scholar
  164. 164.
    Lin F, Emancipator SN, Salant DJ, Medof ME. Decay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis. Lab Invest. 2002;82(5):563–9. [Research Support, U.S. Gov’t, P.H.S.].PubMedGoogle Scholar
  165. 165.
    Topham PS, Csizmadia V, Soler D, Hines D, Gerard CJ, Salant DJ, et al. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest. 1999;104(11):1549–57.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Xu Y, Berrou J, Chen X, Fouqueray B, Callard P, Sraer JD, et al. Induction of urokinase receptor expression in nephrotoxic nephritis. Exp Nephrol. 2001;9(6):397–404.PubMedGoogle Scholar
  167. 167.
    Yanagita M, Ishimoto Y, Arai H, Nagai K, Ito T, Nakano T, et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J Clin Invest. 2002;110(2):239–46.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Carmago S, Shah SV, Walker PD. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats. Kidney Int. 2002;61(3):959–66.PubMedGoogle Scholar
  169. 169.
    Chatterjee PK, Brown PA, Cuzzocrea S, Zacharowski K, Stewart KN, Mota-Filipe H, et al. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int. 2001;59(6):2073–83.PubMedGoogle Scholar
  170. 170.
    Fernandez M, Medina A, Santos F, Carbajo E, Rodriguez J, Alvarez J, et al. Exacerbated inflammatory response induced by insulin-like growth factor I treatment in rats with ischemic acute renal failure. J Am Soc Nephrol. 2001;12(9):1900–7.PubMedGoogle Scholar
  171. 171.
    Gimelreich D, Popovtzer MM, Wald H, Pizov G, Berlatzky Y, Rubinger D. Regulation of ROMK and channel-inducing factor (CHIF) in acute renal failure due to ischemic reperfusion injury. Kidney Int. 2001;59(5):1812–20.PubMedGoogle Scholar
  172. 172.
    Gretz N. The development of hypertension in the remnant kidney model after either pole resection or partial infarction of the kidney. J Am Soc Nephrol. 1995;5(10):1839–40.PubMedGoogle Scholar
  173. 173.
    Jia ZQ, Worthington AE, Hill RP, Hunt JW. The effects of artery occlusion on temperature homogeneity during hyperthermia in rabbit kidneys in vivo. Int J Hyperthermia. 1997;13(1):21–37.PubMedGoogle Scholar
  174. 174.
    Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Nishimatsu H, et al. Effects of vasodilatory antihypertensive agents on endothelial dysfunction in rats with ischemic acute renal failure. Hypertens Res. 2000;23(5):527–33.PubMedGoogle Scholar
  175. 175.
    Knoll T, Schult S, Birck R, Braun C, Michel MS, Bross S, et al. Therapeutic administration of an endothelin-A receptor antagonist after acute ischemic renal failure dose-dependently improves recovery of renal function. J Cardiovasc Pharmacol. 2001;37(4):483–8.PubMedGoogle Scholar
  176. 176.
    Kren S, Hostetter TH. The course of the remnant kidney model in mice. Kidney Int. 1999;56(1):333–7.PubMedGoogle Scholar
  177. 177.
    Kwon O, Phillips CL, Molitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol. 2002;282(6):F1012–9.PubMedGoogle Scholar
  178. 178.
    Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol. 2001;281(4):F693–706.PubMedGoogle Scholar
  179. 179.
    Lloberas N, Torras J, Herrero-Fresneda I, Cruzado JM, Riera M, Hurtado I, et al. Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. Faseb J. 2002;16(8):908–10.PubMedGoogle Scholar
  180. 180.
    Megyesi J, Andrade L, Vieira Jr JM, Safirstein RL, Price PM. Positive effect of the induction of p21WAF1/CIP1 on the course of ischemic acute renal failure. Kidney Int. 2001;60(6):2164–72.PubMedGoogle Scholar
  181. 181.
    Meldrum KK, Hile K, Meldrum DR, Crone JA, Gearhart JP, Burnett AL. Simulated ischemia induces renal tubular cell apoptosis through a nuclear factor-kappaB dependent mechanism. J Urol. 2002;168(1):248–52.PubMedGoogle Scholar
  182. 182.
    Modolo NS, Castiglia YM, Ganem EM, Braz JR, Vianna PT, Vane LA. Acute renal ischemia model in dogs: effects of metoprolol. Ren Fail. 2001;23(1):1–10.PubMedGoogle Scholar
  183. 183.
    Mister M, Noris M, Szymczuk J, Azzollini N, Aiello S, Abbate M, et al. Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion. Kidney Int. 2002;61(3):1064–78.PubMedGoogle Scholar
  184. 184.
    Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron. 2002;90(2):133–8.PubMedGoogle Scholar
  185. 185.
    Power JM, Tonkin AM. Large animal models of heart failure. Aust N Z J Med. 1999;29(3):395–402.PubMedGoogle Scholar
  186. 186.
    Textor SC. Pathophysiology of renal failure in renovascular disease. Am J Kidney Dis. 1994;24(4):642–51.PubMedGoogle Scholar
  187. 187.
    Vaneerdeweg W, Buyssens N, De Winne T, Sebrechts M, Babloyan A, Arakelian S, et al. A standardized surgical technique to obtain a stable and reproducible chronic renal failure model in dogs. Eur Surg Res. 1992;24(5):273–82.PubMedGoogle Scholar
  188. 188.
    Yoshida T, Tang SS, Hsiao LL, Jensen RV, Ingelfinger JR, Gullans SR. Global analysis of gene expression in renal ischemia-reperfusion in the mouse. Biochem Biophys Res Commun. 2002;291(4):787–94.PubMedGoogle Scholar
  189. 189.
    Chevalier RL. Chronic partial ureteral obstruction and the developing kidney. Pediatr Radiol. 2008;38 Suppl 1:S35–40.PubMedGoogle Scholar
  190. 190.
    Ma FY, Tesch GH, Flavell RA, Davis RJ, Nikolic-Paterson DJ. MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. Am J Physiol Renal Physiol. 2007;293(5):F1556–63.PubMedGoogle Scholar
  191. 191.
    Chevalier RL. Pathogenesis of renal injury in obstructive uropathy. Curr Opin Pediatr. 2006;18(2):153–60.PubMedGoogle Scholar
  192. 192.
    Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton). 2011;16(1):30–8. [Review].Google Scholar
  193. 193.
    Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, et al. Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol. 2009;296(2):F213–29. [Review].PubMedGoogle Scholar
  194. 194.
    Fogo AB. Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol. 2003;23(2):161–71. [Review].PubMedGoogle Scholar
  195. 195.
    Dai Y, Gu L, Yuan W, Yu Q, Ni Z, Ross MJ, et al. Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney Int. 2013;84(5):950–61. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedGoogle Scholar
  196. 196.
    Happe H, Peters DJ. Translational research in ADPKD: lessons from animal models. Nat Rev Nephrol. 2014;10(10):587–601. [Review].PubMedGoogle Scholar
  197. 197.
    Nagao S, Kugita M, Yoshihara D, Yamaguchi T. Animal models for human polycystic kidney disease. Exp Anim. 2012;61(5):477–88. [Research Support, Non-U.S. Gov’t Review].PubMedGoogle Scholar
  198. 198.
    Wilson PD. Mouse models of polycystic kidney disease. Curr Top Dev Biol. 2008;84:311–50. [Review].PubMedGoogle Scholar
  199. 199.
    Foster MH. Relevance of systemic lupus erythematosus nephritis animal models to human disease. Semin Nephrol. 1999;19(1):12–24.PubMedGoogle Scholar
  200. 200.
    Morel L, Wakeland EK. Susceptibility to lupus nephritis in the NZB/W model system. Curr Opin Immunol. 1998;10(6):718–25.PubMedGoogle Scholar
  201. 201.
    Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998;199(2):265–85.PubMedGoogle Scholar
  202. 202.
    Gavalchin J, Staines NA. T and B cell recognition of idiotypes of anti-DNA autoantibodies. Lupus. 1997;6(3):337–43.PubMedGoogle Scholar
  203. 203.
    Isenberg DA, Ravirajan CT, Rahman A, Kalsi J. The role of antibodies to DNA in systemic lupus erythematosus–a review and introduction to an international workshop on DNA antibodies held in London, May 1996. Lupus. 1997;6(3):290–304.PubMedGoogle Scholar
  204. 204.
    Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet. 2002;31(4):424–8.PubMedGoogle Scholar
  205. 205.
    Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity. 2002;16(4):499–508.PubMedGoogle Scholar
  206. 206.
    Tabata N, Miyazawa M, Fujisawa R, Takei YA, Abe H, Hashimoto K. Establishment of monoclonal anti-retroviral gp70 autoantibodies from MRL/lpr lupus mice and induction of glomerular gp70 deposition and pathology by transfer into non-autoimmune mice. J Virol. 2000;74(9):4116–26.PubMedCentralPubMedGoogle Scholar
  207. 207.
    Cruse JM, Lewis RE, Dilioglou S. Fate of immune complexes, glomerulonephritis, and cell-mediated vasculitis in lupus-prone MRL/Mp lpr/lpr mice. Exp Mol Pathol. 2000;69(3):211–22.PubMedGoogle Scholar
  208. 208.
    Ophascharoensuk V, Fero ML, Hughes J, Roberts JM, Shankland SJ. The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nat Med. 1998;4(5):575–80.PubMedGoogle Scholar
  209. 209.
    Cattell V, Cook HT, Ebrahim H, Waddington SN, Wei XQ, Assmann KJ, et al. Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2. Kidney Int. 1998;53(4):932–6.PubMedGoogle Scholar
  210. 210.
    Quigg RJ, Lim A, Haas M, Alexander JJ, He C, Carroll MC. Immune complex glomerulonephritis in C4- and C3-deficient mice. Kidney Int. 1998;53(2):320–30.PubMedGoogle Scholar
  211. 211.
    Tang T, Rosenkranz A, Assmann KJ, Goodman MJ, Gutierrez-Ramos JC, Carroll MC, et al. A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med. 1997;186(11):1853–63.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Ito MR, Terasaki S, Itoh J, Katoh H, Yonehara S, Nose M. Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Arthritis Rheum. 1997;40(6):1054–63.PubMedGoogle Scholar
  213. 213.
    Haas C, Ryffel B, Le Hir M. IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J Immunol. 1997;158(11):5484–91.PubMedGoogle Scholar
  214. 214.
    Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell. 1995;83(2):301–11.PubMedGoogle Scholar
  215. 215.
    Cyster JG. Lymphoid organ development and cell migration. Immunol Rev. 2003;195:5–14.PubMedGoogle Scholar
  216. 216.
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410(6824):101–5.PubMedGoogle Scholar
  217. 217.
    Gudmundsdottir H, Turka LA. T cell costimulatory blockade: new therapies for transplant rejection. J Am Soc Nephrol. 1999;10(6):1356–65.PubMedGoogle Scholar
  218. 218.
    Dong VM, Womer KL, Sayegh MH. Transplantation tolerance: the concept and its applicability. Pediatr Transplant. 1999;3(3):181–92.PubMedGoogle Scholar
  219. 219.
    Bromberg JS, Murphy B. Routes to allograft survival. J Clin Invest. 2001;107(7):797–8.PubMedCentralPubMedGoogle Scholar
  220. 220.
    Light J, Salomon DR, Diethelm AG, Alexander JW, Hunsicker L, Thistlethwaite R, et al. Bone marrow transfusions in cadaver renal allografts: pilot trials with concurrent controls. Clin Transplant. 2002;16(5):317–24.PubMedGoogle Scholar
  221. 221.
    Knechtle SJ, Hamawy MM, Hu H, Fechner Jr JH, Cho CS. Tolerance and near-tolerance strategies in monkeys and their application to human renal transplantation. Immunol Rev. 2001;183:205–13.PubMedGoogle Scholar
  222. 222.
    Inverardi L, Ricordi C. Tolerance and pancreatic islet transplantation. Philos Trans R Soc Lond B Biol Sci. 2001;356(1409):759–65.PubMedCentralPubMedGoogle Scholar
  223. 223.
    Field EH, Strober S. Tolerance, mixed chimerism and protection against graft-versus-host disease after total lymphoid irradiation. Philos Trans R Soc Lond B Biol Sci. 2001;356(1409):739–48.PubMedCentralPubMedGoogle Scholar
  224. 224.
    Decker CJ, Heiser AD, Chaturvedi PR, Faust TJ, Ku G, Moseley S, et al. The novel IMPDH inhibitor VX-497 prolongs skin graft survival and improves graft versus host disease in mice. Drugs Exp Clin Res. 2001;27(3):89–95.PubMedGoogle Scholar
  225. 225.
    Yoshimura R, Chargui J, Aitouche A, Veyron P, Touraine JL. Induction of hyperacute rejection of skin allografts by CD8+ lymphocytes. Transplantation. 2000;69(7):1452–7.PubMedGoogle Scholar
  226. 226.
    Gardner CR. The pharmacology of immunosuppressant drugs in skin transplant rejection in mice and other rodents. Gen Pharmacol. 1995;26(2):245–71.PubMedGoogle Scholar
  227. 227.
    Tepper MA, Linsley PS, Tritschler D, Esselstyn JM. Tolerance induction by soluble CTLA4 in a mouse skin transplant model. Transplant Proc. 1994;26(6):3151–4.PubMedGoogle Scholar
  228. 228.
    Sho M, Sandner SE, Najafian N, Salama AD, Dong V, Yamada A, et al. New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg. 2002;236(5):667–75.PubMedCentralPubMedGoogle Scholar
  229. 229.
    Rolls HK, Kishimoto K, Dong VM, Illigens BM, Sho M, Sayegh MH, et al. T-cell response to cardiac myosin persists in the absence of an alloimmune response in recipients with chronic cardiac allograft rejection. Transplantation. 2002;74(7):1053–7.PubMedGoogle Scholar
  230. 230.
    Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW. Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol. 2002;169(8):4667–73.PubMedGoogle Scholar
  231. 231.
    Fedoseyeva EV, Kishimoto K, Rolls HK, Illigens BM, Dong VM, Valujskikh A, et al. Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol. 2002;169(3):1168–74.PubMedGoogle Scholar
  232. 232.
    Coates PT, Krishnan R, Kireta S, Johnston J, Russ GR. Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther. 2001;8(16):1224–33.PubMedGoogle Scholar
  233. 233.
    Fahy O, Porte H, Senechal S, Vorng H, McEuen AR, Buckley MG, et al. Chemokine-induced cutaneous inflammatory cell infiltration in a model of Hu-PBMC-SCID mice grafted with human skin. Am J Pathol. 2001;158(3):1053–63.PubMedCentralPubMedGoogle Scholar
  234. 234.
    Moulton KS, Melder RJ, Dharnidharka VR, Hardin-Young J, Jain RK, Briscoe DM. Angiogenesis in the huPBL-SCID model of human transplant rejection. Transplantation. 1999;67(12):1626–31.PubMedGoogle Scholar
  235. 235.
    Briscoe DM, Dharnidharka VR, Isaacs C, Downing G, Prosky S, Shaw P, et al. The allogeneic response to cultured human skin equivalent in the hu-PBL-SCID mouse model of skin rejection. Transplantation. 1999;67(12):1590–9.PubMedGoogle Scholar
  236. 236.
    Hammerman MR. Xenotransplantation of renal primordia. Curr Opin Nephrol Hypertens. 2002;11(1):11–6.PubMedGoogle Scholar
  237. 237.
    Palmer DB, Lechler R. Can the thymus be a useful tool to induce specific tolerance to xenoantigens? Transplantation. 1999;68(11):1628–30.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Children’s Hospital BostonBostonUSA

Personalised recommendations