Skip to main content

Nutrition, Growth, and Development

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Normal growth and development are central goals in the management of children with chronic kidney disease (CKD). Nutritional adequacy plays an influential role in the achievement of these goals. This chapter will review the growth patterns observed in children with CKD as well as the causes of growth impairment and the signs and causes of protein energy wasting (PEW) in pediatric CKD. The methods for assessing growth and nutritional status, along with the limitations of these measures in CKD, will also be reviewed. Management strategies to optimize growth and nutrition among children with CKD, including the use of recombinant growth hormone, will be outlined. Finally, the chapter will conclude with information pertaining to the neurodevelopment of the child with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Karlberg J. On the construction of the infancy-childhood-puberty growth standard. Acta Paediatr Scand Suppl. 1989;356:26–37.

    Article  CAS  PubMed  Google Scholar 

  2. Karlberg J, Engström I, Karlberg P, Fryer JG. Analysis of linear growth using a mathematical model. I. From birth to three years. Acta Paediatr Scand. 1987;76(3):478–88.

    Article  CAS  PubMed  Google Scholar 

  3. Karlberg J, Fryer JG, Engström I, Karlberg P. Analysis of linear growth using a mathematical model. II. From 3 to 21 years of age. Acta Paediatr Scand Suppl. 1987;337:12–29.

    Article  CAS  PubMed  Google Scholar 

  4. Karlberg J, Schaefer F, Hennicke M, Wingen AM, Rigden S, Mehls O. Early age-dependent growth impairment in chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Pediatr Nephrol. 1996;10(3):283–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tanner JM. Growth at adolescence. 2nd ed. Springfield: Thomas; 1962.

    Google Scholar 

  6. Prader A. Testicular size: assessment and clinical importance. Triangle. 1966;7(6):240–3.

    CAS  PubMed  Google Scholar 

  7. Blondell RD, Foster MB, Dave KC. Disorders of puberty. Am Fam Physician. 1999;60(1):209–18, 23–4

    CAS  PubMed  Google Scholar 

  8. Norman LJ, Coleman JE, Macdonald IA, Tomsett AM, Watson AR. Nutrition and growth in relation to severity of renal disease in children. Pediatr Nephrol. 2000;15(3–4):259–65.

    Article  CAS  PubMed  Google Scholar 

  9. Hokken-Koelega AC, van Zaal MA, van Bergen W, de Ridder MA, Stijnen T, Wolff ED, et al. Final height and its predictive factors after renal transplantation in childhood. Pediatr Res. 1994;36(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wong CS, Gipson DS, Gillen DL, Emerson S, Koepsell T, Sherrard DJ, et al. Anthropometric measures and risk of death in children with end-stage renal disease. Am J Kidney Dis. 2000;36(4):811–9.

    Article  CAS  PubMed  Google Scholar 

  11. Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR. Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol. 2002;17(6):450–5.

    Article  PubMed  Google Scholar 

  12. Warady BA, Abraham AG, Schwartz GJ, Wong CS, Muñoz A, Betoko A, et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the chronic kidney disease in children (CKiD) cohort. Am J Kidney Dis. 2015;65(6):878–88.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Greenbaum LA, Warady BA, Furth SL, Ng DK. Short stature in advanced pediatric CKD is associated with faster time to reduced kidney function after transplant. Pediatr Nephrol. 2019;34(5):897–905.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zimet GD, Cutler M, Litvene M, Dahms W, Owens R, Cuttler L. Psychological adjustment of children evaluated for short stature: a preliminary report. J Dev Behav Pediatr. 1995;16(4):264–70.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Uzri A, Matheson M, Gipson DS, Mendley SR, Hooper SR, Yadin O, et al. The impact of short stature on health-related quality of life in children with chronic kidney disease. J Pediatr. 2013;163(3):736–41.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest. 2001;108(3):467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaefer F, Wingen AM, Hennicke M, Rigden S, Mehls O. Growth charts for prepubertal children with chronic renal failure due to congenital renal disorders. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Pediatr Nephrol. 1996;10(3):288–93.

    Article  CAS  PubMed  Google Scholar 

  18. Schaefer F, Seidel C, Binding A, Gasser T, Largo RH, Prader A, et al. Pubertal growth in chronic renal failure. Pediatr Res. 1990;28(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  19. Mehls O, Schaefer F. Endocrine, metabolic and growth disorders – patterns of growth and maturation in chronic renal failure – impact of developmental stage. Holliday MBT, Avner E, editors. Baltimore: Williams and Wilkins; 1994.

    Google Scholar 

  20. Tainio J, Qvist E, Vehmas R, Jahnukainen K, Hölttä T, Valta H, et al. Pubertal development is normal in adolescents after renal transplantation in childhood. Transplantation. 2011;92(4):404–9.

    Article  PubMed  Google Scholar 

  21. Franke D, Winkel S, Gellermann J, Querfeld U, Pape L, Ehrich JH, et al. Growth and maturation improvement in children on renal replacement therapy over the past 20 years. Pediatr Nephrol. 2013;28(10):2043–51.

    Article  PubMed  Google Scholar 

  22. Daschner M, Philippin B, Nguyen T, Wiesner RJ, Walz C, Oh J, et al. Circulating inhibitor of gonadotropin releasing hormone secretion by hypothalamic neurons in uremia. Kidney Int. 2002;62(5):1582–90.

    Article  CAS  PubMed  Google Scholar 

  23. Schaefer F, Veldhuis JD, Robertson WR, Dunger D, Schärer K. Immunoreactive and bioactive luteinizing hormone in pubertal patients with chronic renal failure. Cooperative Study Group on Pubertal Development in Chronic Renal Failure. Kidney Int. 1994;45(5):1465–76.

    Article  CAS  PubMed  Google Scholar 

  24. Abitbol CL, Zilleruelo G, Montane B, Strauss J. Growth of uremic infants on forced feeding regimens. Pediatr Nephrol. 1993;7(2):173–7.

    Article  CAS  PubMed  Google Scholar 

  25. Mak RH, Cheung W, Cone RD, Marks DL. Mechanisms of disease: cytokine and adipokine signaling in uremic cachexia. Nat Clin Pract Nephrol. 2006;2(9):527–34.

    Article  CAS  PubMed  Google Scholar 

  26. Dello Strologo L, Principato F, Sinibaldi D, Appiani AC, Terzi F, Dartois AM, et al. Feeding dysfunction in infants with severe chronic renal failure after long-term nasogastric tube feeding. Pediatr Nephrol. 1997;11(1):84–6.

    Article  Google Scholar 

  27. Donckerwolcke R, Yang WN, Chan JC. Growth failure in children with renal tubular acidosis. Semin Nephrol. 1989;9(1):72–4.

    CAS  PubMed  Google Scholar 

  28. Feneberg R, Schaefer F, Veldhuis JD. Neuroendocrine adaptations in renal disease. Pediatr Nephrol. 2003;18(6):492–7.

    Article  PubMed  Google Scholar 

  29. Schaefer F, Baumann G, Haffner D, Faunt LM, Johnson ML, Mercado M, et al. Multifactorial control of the elimination kinetics of unbound (free) growth hormone (GH) in the human: regulation by age, adiposity, renal function, and steady state concentrations of GH in plasma. J Clin Endocrinol Metab. 1996;81(1):22–31.

    CAS  PubMed  Google Scholar 

  30. Tönshoff B, Veldhuis JD, Heinrich U, Mehls O. Deconvolution analysis of spontaneous nocturnal growth hormone secretion in prepubertal children with preterminal chronic renal failure and with end-stage renal disease. Pediatr Res. 1995;37(1):86–93.

    Article  PubMed  Google Scholar 

  31. Troib A, Landau D, Kachko L, Rabkin R, Segev Y. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation. Kidney Int. 2013;84(5):940–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nelms CL, Shaw V, Greenbaum LA, Anderson C, Desloovere A, Haffner D, et al. Assessment of nutritional status in children with kidney diseases-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol. 2020;29:1987–95.

    Google Scholar 

  33. KDOQI. Clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. Am J Kidney Dis. 2009;53(3 Suppl 2):S1–124.

    Google Scholar 

  34. Organization WH. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight -for-height and body mass index-for-age: methods and development. Geneva: World Health Organization; 2006.

    Google Scholar 

  35. Frías JL, Davenport ML. Health supervision for children with turner syndrome. Pediatrics. 2003;111(3):692–702.

    Article  PubMed  Google Scholar 

  36. Zemel BS, Pipan M, Stallings VA, Hall W, Schadt K, Freedman DS, et al. Growth charts for children with down syndrome in the United States. Pediatrics. 2015;136(5):e1204–11.

    Article  PubMed  Google Scholar 

  37. Guo SS, Roche AF, Chumlea WC, Casey PH, Moore WM. Growth in weight, recumbent length, and head circumference for preterm low-birthweight infants during the first three years of life using gestation-adjusted ages. Early Hum Dev. 1997;47(3):305–25.

    Article  CAS  PubMed  Google Scholar 

  38. Greulich W, Pyle S. Radiographic atlas of skeletal development of the hand and wrist: second edition. Stanford: Stanford University Press; 1959.

    Book  Google Scholar 

  39. Organization WH. WHO child growth standards: growth velocity based on weight, length and head circumference: methods and development. Geneva: World Health Organization; 2009.

    Google Scholar 

  40. Baumgartner RN, Roche AF, Himes JH. Incremental growth tables: supplementary to previously published charts. Am J Clin Nutr. 1986;43(5):711–22.

    Article  CAS  PubMed  Google Scholar 

  41. Tanner JM, Davies PS. Clinical longitudinal standards for height and height velocity for North American children. J Pediatr. 1985;107(3):317–29.

    Article  CAS  PubMed  Google Scholar 

  42. Charra B, Calemard E, Cuche M, Laurent G. Control of hypertension and prolonged survival on maintenance hemodialysis. Nephron. 1983;33(2):96–9.

    Article  CAS  PubMed  Google Scholar 

  43. Gao T, Leonard MB, Zemel B, Kalkwarf HJ, Foster BJ. Interpretation of body mass index in children with CKD. Clin J Am Soc Nephrol. 2012;7(4):558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.

    Article  PubMed  Google Scholar 

  45. Leavey SF, Strawderman RL, Jones CA, Port FK, Held PJ. Simple nutritional indicators as independent predictors of mortality in hemodialysis patients. Am J Kidney Dis. 1998;31(6):997–1006.

    Article  CAS  PubMed  Google Scholar 

  46. Pifer TB, McCullough KP, Port FK, Goodkin DA, Maroni BJ, Held PJ, et al. Mortality risk in hemodialysis patients and changes in nutritional indicators: DOPPS. Kidney Int. 2002;62(6):2238–45.

    Article  PubMed  Google Scholar 

  47. Kaizu Y, Tsunega Y, Yoneyama T, Sakao T, Hibi I, Miyaji K, et al. Overweight as another nutritional risk factor for the long-term survival of non-diabetic hemodialysis patients. Clin Nephrol. 1998;50(1):44–50.

    CAS  PubMed  Google Scholar 

  48. Organization WH. WHO child growth standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. Geneva: World Health Organization; 2007.

    Google Scholar 

  49. Warady BA, Belden B, Kohaut E. Neurodevelopmental outcome of children initiating peritoneal dialysis in early infancy. Pediatr Nephrol. 1999;13(9):759–65.

    Article  CAS  PubMed  Google Scholar 

  50. Ayestaran FW, Schneider MF, Kaskel FJ, Srivaths PR, Seo-Mayer PW, Moxey-Mims M, et al. Perceived appetite and clinical outcomes in children with chronic kidney disease. Pediatr Nephrol. 2016;31(7):1121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bandini LG, Cyr H, Must A, Dietz WH. Validity of reported energy intake in preadolescent girls. Am J Clin Nutr. 1997;65(4 Suppl):1138s–41s.

    Article  CAS  PubMed  Google Scholar 

  52. Champagne CM, Baker NB, DeLany JP, Harsha DW, Bray GA. Assessment of energy intake underreporting by doubly labeled water and observations on reported nutrient intakes in children. J Am Diet Assoc. 1998;98(4):426–33.

    Article  CAS  PubMed  Google Scholar 

  53. Secker DJ, Jeejeebhoy KN. How to perform subjective global nutritional assessment in children. J Acad Nutr Diet. 2012;112(3):424–31.e6.

    Article  PubMed  Google Scholar 

  54. Secker D, Cornelius V, Teh JC. Validation of subjective global (nutritional) assessment (SGNA) in children with CKD. J Ren Nutr. 2011;21(2):207.

    Article  Google Scholar 

  55. Steiber A, Leon JB, Secker D, McCarthy M, McCann L, Serra M, et al. Multicenter study of the validity and reliability of subjective global assessment in the hemodialysis population. J Ren Nutr. 2007;17(5):336–42.

    Article  PubMed  Google Scholar 

  56. Goldstein SL, Baronette S, Gambrell TV, Currier H, Brewer ED. nPCR assessment and IDPN treatment of malnutrition in pediatric hemodialysis patients. Pediatr Nephrol. 2002;17(7):531–4.

    Article  PubMed  Google Scholar 

  57. Mak RH, Ikizler TA, Kovesdy CP, Raj DS, Stenvinkel P, Kalantar-Zadeh K. Erratum to: wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle. 2011;2(2):119.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  59. Abraham AG, Mak RH, Mitsnefes M, White C, Moxey-Mims M, Warady B, et al. Protein energy wasting in children with chronic kidney disease. Pediatr Nephrol. 2014;29(7):1231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Foster BJ, Kalkwarf HJ, Shults J, Zemel BS, Wetzsteon RJ, Thayu M, et al. Association of chronic kidney disease with muscle deficits in children. J Am Soc Nephrol. 2011;22(2):377–86.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cheema BS, Singh MA. Exercise training in patients receiving maintenance hemodialysis: a systematic review of clinical trials. Am J Nephrol. 2005;25(4):352–64.

    Article  PubMed  Google Scholar 

  62. Clapp EL, Bevington A, Smith AC. Exercise for children with chronic kidney disease and end-stage renal disease. Pediatr Nephrol. 2012;27(2):165–72.

    Article  PubMed  Google Scholar 

  63. Gunta SS, Mak RH. Ghrelin and leptin pathophysiology in chronic kidney disease. Pediatr Nephrol. 2013;28(4):611–6.

    Article  PubMed  Google Scholar 

  64. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest. 2005;115(6):1659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheung WW, Ding W, Gunta SS, Gu Y, Tabakman R, Klapper LN, et al. A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice. J Am Soc Nephrol. 2014;25(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  66. Wang Z, Oliveira EA, Mak RH. Unacylated ghrelin and obestatin in pediatric CKD: are they important in protein energy wasting? Pediatr Nephrol. 2018;33(5):741–3.

    Article  PubMed  Google Scholar 

  67. Cheung WW, Mak RH. Ghrelin and its analogues as therapeutic agents for anorexia and cachexia in end-stage renal disease. Kidney Int. 2009;76(2):135–7.

    Article  CAS  PubMed  Google Scholar 

  68. Ikizler TA, Wingard RL, Sun M, Harvell J, Parker RA, Hakim RM. Increased energy expenditure in hemodialysis patients. J Am Soc Nephrol. 1996;7(12):2646–53.

    Article  CAS  PubMed  Google Scholar 

  69. Wang AY, Sea MM, Tang N, Sanderson JE, Lui SF, Li PK, et al. Resting energy expenditure and subsequent mortality risk in peritoneal dialysis patients. J Am Soc Nephrol. 2004;15(12):3134–43.

    Article  PubMed  Google Scholar 

  70. Cheung WW, Cherqui S, Ding W, Esparza M, Zhou P, Shao J, et al. Muscle wasting and adipose tissue browning in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle. 2016;7(2):152–64.

    Article  PubMed  Google Scholar 

  71. Kopple JD, Cheung AK, Christiansen JS, Djurhuus CB, El Nahas M, Feldt-Rasmussen B, et al. Opportunity & trade: a large-scale randomized clinical trial of growth hormone in hemodialysis patients. Nephrol Dial Transplant. 2011;26(12):4095–103.

    Article  CAS  PubMed  Google Scholar 

  72. Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 2016;23(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  73. Cheung WW, Ding W, Hoffman HM, Wang Z, Hao S, Zheng R, et al. Vitamin D ameliorates adipose browning in chronic kidney disease cachexia. Sci Rep. 2020;10(1):14175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mak RH, Ikizler AT, Kovesdy CP, Raj DS, Stenvinkel P, Kalantar-Zadeh K. Wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle. 2011;2(1):9–25.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press; 2005. 1358 p.

    Google Scholar 

  76. Shaw V, Polderman N, Renken-Terhaerdt J, Paglialonga F, Oosterveld M, Tuokkola J, et al. Energy and protein requirements for children with CKD stages 2–5 and on dialysis-clinical practice recommendations from the pediatric renal nutrition taskforce. Pediatr Nephrol. 2020;35(3):519–31.

    Article  PubMed  Google Scholar 

  77. Anderson CE, Gilbert RD, Elia M. Basal metabolic rate in children with chronic kidney disease and healthy control children. Pediatr Nephrol. 2015;30(11):1995–2001.

    Article  PubMed  Google Scholar 

  78. Health Canada. Dietary reference intakes, http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/nutrition/dri_tables-eng.pdf, 2010 [accessed 12.28.19].

  79. Bodnar DM, Busch S, Fuchs J, Piedmonte M, Schreiber M. Estimating glucose absorption in peritoneal dialysis using peritoneal equilibration tests. Adv Perit Dial. 1993;9:114–8.

    CAS  PubMed  Google Scholar 

  80. Edefonti A, Picca M, Damiani B, Loi S, Ghio L, Giani M, et al. Dietary prescription based on estimated nitrogen balance during peritoneal dialysis. Pediatr Nephrol. 1999;13(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  81. Foreman JW, Abitbol CL, Trachtman H, Garin EH, Feld LG, Strife CF, et al. Nutritional intake in children with renal insufficiency: a report of the growth failure in children with renal diseases study. J Am Coll Nutr. 1996;15(6):579–85.

    Article  CAS  PubMed  Google Scholar 

  82. Kari JA, Gonzalez C, Ledermann SE, Shaw V, Rees L. Outcome and growth of infants with severe chronic renal failure. Kidney Int. 2000;57(4):1681–7.

    Article  CAS  PubMed  Google Scholar 

  83. Hui WF, Betoko A, Savant JD, Abraham AG, Greenbaum LA, Warady B, et al. Assessment of dietary intake of children with chronic kidney disease. Pediatr Nephrol. 2017;32(3):485–94.

    Article  PubMed  Google Scholar 

  84. Betts PR, Magrath G, White RH. Role of dietary energy supplementation in growth of children with chronic renal insufficiency. Br Med J. 1977;1(6058):416–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schaefer F, Benner L, Borzych-Dużałka D, Zaritsky J, Xu H, Rees L, et al. Global variation of nutritional status in children undergoing chronic peritoneal dialysis: a longitudinal study of the international pediatric peritoneal dialysis network. sci rep. 2019;9(1):4886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rees L, Azocar M, Borzych D, Watson AR, Buscher A, Edefonti A, et al. Growth in very young children undergoing chronic peritoneal dialysis. J Am Soc Nephrol. 2011;22(12):2303–12.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Joshi S, Shah S, Kalantar-Zadeh K. Adequacy of plant-based proteins in chronic kidney disease. J Ren Nutr. 2019;29(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  88. Shinaberger CS, Greenland S, Kopple JD, Van Wyck D, Mehrotra R, Kovesdy CP, et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr. 2008;88(6):1511–8.

    Article  CAS  PubMed  Google Scholar 

  89. Uauy RD, Hogg RJ, Brewer ED, Reisch JS, Cunningham C, Holliday MA. Dietary protein and growth in infants with chronic renal insufficiency: a report from the Southwest Pediatric Nephrology Study Group and the University of California, San Francisco. Pediatr Nephrol. 1994;8(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  90. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet. 1997;349(9059):1117–23.

    Article  CAS  PubMed  Google Scholar 

  91. Krenitsky J. Adjusted body weight, pro: evidence to support the use of adjusted body weight in calculating calorie requirements. Nutr Clin Pract. 2005;20(4):468–73.

    Article  PubMed  Google Scholar 

  92. Quan A, Baum M. Protein losses in children on continuous cycler peritoneal dialysis. Pediatr Nephrol. 1996;10(6):728–31.

    Article  CAS  PubMed  Google Scholar 

  93. Ikizler TA, Flakoll PJ, Parker RA, Hakim RM. Amino acid and albumin losses during hemodialysis. Kidney Int. 1994;46(3):830–7.

    Article  CAS  PubMed  Google Scholar 

  94. Azocar MA, Cano FJ, Marin V, Delucchi MA, Rodriguez EE. Body composition in children on peritoneal dialysis. Adv Perit Dial. 2004;20:231–6.

    PubMed  Google Scholar 

  95. Sedlacek M, Dimaano F, Uribarri J. Relationship between phosphorus and creatinine clearance in peritoneal dialysis: clinical implications. Am J Kidney Dis. 2000;36(5):1020–4.

    Article  CAS  PubMed  Google Scholar 

  96. Saland JM, Kupferman JC, Pierce CB, Flynn JT, Mitsnefes MM, Warady BA, et al. Change in dyslipidemia with declining glomerular filtration rate and increasing proteinuria in children with CKD. Clin J Am Soc Nephrol. 2019;14(12):1711–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wilson AC, Schneider MF, Cox C, Greenbaum LA, Saland J, White CT, et al. Prevalence and correlates of multiple cardiovascular risk factors in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(12):2759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Saland JM, Ginsberg HN. Lipoprotein metabolism in chronic renal insufficiency. Pediatr Nephrol. 2007;22(8):1095–112.

    Article  PubMed  Google Scholar 

  99. Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group. KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int Suppl. 2013;3:259–305.

    Google Scholar 

  100. Mak RH. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53(5):1353–7.

    Article  CAS  PubMed  Google Scholar 

  101. Mak RH. Metabolic effects of erythropoietin in patients on peritoneal dialysis. Pediatr Nephrol. 1998;12(8):660–5.

    Article  CAS  PubMed  Google Scholar 

  102. Mak RH. Effect of metabolic acidosis on hyperlipidemia in uremia. Pediatr Nephrol. 1999;13(9):891–3.

    Article  CAS  PubMed  Google Scholar 

  103. National Kidney Foundation. KDOQI clinical practice guidelines for managing dyslipidemias in chronic kidney disease. Am J Kidney Dis. 2003;41:S1–91.

    Google Scholar 

  104. National Kidney Foundation. KDOQI clinical practice guidelines on cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45:S1–154.

    Google Scholar 

  105. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents; National heart, lung, and blood institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.

    Google Scholar 

  106. US Department of Health and Human Services, US Department of Agriculture. Dietary guidelines for Americans. Washington, DC: US Government Printing Office; 2005. p. 70.

    Google Scholar 

  107. Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, et al. n-3 fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr. 2006;84(1):5–17.

    Article  CAS  PubMed  Google Scholar 

  108. McAlister L, Pugh P, Greenbaum L, Haffner D, Rees L, Anderson C, et al. The dietary management of calcium and phosphate in children with CKD stages 2–5 and on dialysis-clinical practice recommendation from the pediatric renal nutrition taskforce. Pediatr Nephrol. 2020;35(3):501–18.

    Article  PubMed  Google Scholar 

  109. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(3):519–30.

    Article  CAS  PubMed  Google Scholar 

  110. Borgi L. Inclusion of phosphorus in the nutrition facts label. Clin J Am Soc Nephrol. 2019;14(1):139–40.

    Article  PubMed  Google Scholar 

  111. Nelson SM, Sarabia SR, Christilaw E, Ward EC, Lynch SK, Adams MA, et al. Phosphate-containing prescription medications contribute to the daily phosphate intake in a third of hemodialysis patients. J Ren Nutr. 2017;27(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  112. Shinaberger CS, Kilpatrick RD, Regidor DL, McAllister CJ, Greenland S, Kopple JD, et al. Longitudinal associations between dietary protein intake and survival in hemodialysis patients. Am J Kidney Dis. 2006;48(1):37–49.

    Article  PubMed  Google Scholar 

  113. Ferrara E, Lemire J, Reznik VM, Grimm PC. Dietary phosphorus reduction by pretreatment of human breast milk with sevelamer. Pediatr Nephrol. 2004;19(7):775–9.

    Article  PubMed  Google Scholar 

  114. Kumar J, McDermott K, Abraham AG, Friedman LA, Johnson VL, Kaskel FJ, et al. Prevalence and correlates of 25-hydroxyvitamin D deficiency in the chronic kidney disease in children (CKiD) cohort. Pediatr Nephrol. 2016;31(1):121–9.

    Article  PubMed  Google Scholar 

  115. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, et al. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med. 2013;369(21):1991–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shroff R, Wan M, Nagler EV, Bakkaloglu S, Fischer DC, Bishop N, et al. Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease stages 2–5 and on dialysis. Nephrol Dial Transplant. 2017;32(7):1098–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boirie Y, Broyer M, Gagnadoux MF, Niaudet P, Bresson J-L. Alterations of protein metabolism by metabolic acidosis in children with chronic renal failure. Kidney Int. 2000;58(1):236–41.

    Article  CAS  PubMed  Google Scholar 

  118. Brown DD, Roem J, Ng DK, Reidy KJ, Kumar J, Abramowitz MK, et al. Low serum bicarbonate and CKD progression in children. Clin J Am Soc Nephrol. 2020;15(6):755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wassner SJ, Kulin HE. Diminished linear growth associated with chronic salt depletion. Clin Pediatr (Phila). 1990;29(12):719–21.

    Article  CAS  Google Scholar 

  120. Chen W, Ducharme-Smith K, Davis L, Hui WF, Warady BA, Furth SL, et al. Dietary sources of energy and nutrient intake among children and adolescents with chronic kidney disease. Pediatr Nephrol. 2017;32(7):1233–41.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Paulson WD, Bock GH, Nelson AP, Moxey-Mims MM, Crim LM. Hyponatremia in the very young chronic peritoneal dialysis patient. Am J Kidney Dis. 1989;14(3):196–9.

    Article  CAS  PubMed  Google Scholar 

  122. Chadha V, Woloshuk RJ, Warady BA. Nutrution in pediatric kidney diseases. In: Mitch WE, Ikizler TA, editors. Handbook of nutrition and the kidney. 7th ed. Philadelphia: Wolters Kluwer; 2018. p. 245–8.

    Google Scholar 

  123. Bunchman TE, Wood EG, Schenck MH, Weaver KA, Klein BL, Lynch RE. Pretreatment of formula with sodium polystyrene sulfonate to reduce dietary potassium intake. Pediatr Nephrol. 1991;5(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  124. Taylor JM, Oladitan L, Carlson S, Hamilton-Reeves JM. Renal formulas pretreated with medications alters the nutrient profile. Pediatr Nephrol. 2015;30(10):1815–23.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Schröder CH, de Boer AW, Giesen AM, Monnens LA, Blom H. Treatment of hyperhomocysteinemia in children on dialysis by folic acid. Pediatr Nephrol. 1999;13(7):583–5.

    Article  PubMed  Google Scholar 

  126. Thomson NM, Stevens BJ, Humphery TJ, Atkins RC. Comparison of trace elements in peritoneal dialysis, hemodialysis, and uremia. Kidney Int. 1983;23(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  127. Kriley M, Warady BA. Vitamin status of pediatric patients receiving long-term peritoneal dialysis. Am J Clin Nutr. 1991;53(6):1476–9.

    Article  CAS  PubMed  Google Scholar 

  128. Fouque D, Holt S, Guebre-Egziabher F, Nakamura K, Vianey-Saban C, Hadj-Aïssa A, et al. Relationship between serum carnitine, acylcarnitines, and renal function in patients with chronic renal disease. J Ren Nutr. 2006;16(2):125–31.

    Article  PubMed  Google Scholar 

  129. Belay B, Esteban-Cruciani N, Walsh CA, Kaskel FJ. The use of levo-carnitine in children with renal disease: a review and a call for future studies. Pediatr Nephrol. 2006;21(3):308–17.

    Article  PubMed  Google Scholar 

  130. Eknoyan G, Latos DL, Lindberg J. Practice recommendations for the use of L-carnitine in dialysis-related carnitine disorder. National Kidney Foundation Carnitine consensus conference. Am J Kidney Dis. 2003;41(4):868–76.

    Article  PubMed  Google Scholar 

  131. Patel C, Denny M. Cultural foods and renal diets. A multilingual guide for renal patients. Sections I & II.: Northern California/Northern Nevada; 1988.

    Google Scholar 

  132. Warady BA, Weis L, Johnson L. Nasogastric tube feeding in infants on peritoneal dialysis. Perit Dial Int. 1996;16(Suppl 1):S521–5.

    Article  PubMed  Google Scholar 

  133. Rees L, Shaw V, Qizalbash L, Anderson C, Desloovere A, Greenbaum L, et al. Delivery of a nutritional prescription by enteral tube feeding in children with chronic kidney disease stages 2–5 and on dialysis – clinical practice recommendations from the Pediatric renal nutrition taskforce. Pediatr Nephrol. 2021;36(1):187–204.

    Article  PubMed  Google Scholar 

  134. Tolia V, Lin CH, Kuhns LR. Gastric emptying using three different formulas in infants with gastroesophageal reflux. J Pediatr Gastroenterol Nutr. 1992;15(3):297–301.

    Article  CAS  PubMed  Google Scholar 

  135. Watson AR, Coleman JE, Warady BA. When and how to use nasogastric and gastrostomy feeding for nutritional support in infants and children on CAPD/CCPD. In: Fine RN, Alexander SR, Warady BA, editors. CAPD/CCPD in children. Boston: Springer; 1998. p. 281–300.

    Chapter  Google Scholar 

  136. Warady BA, Bakkaloglu S, Newland J, Cantwell M, Verrina E, Neu A, et al. Consensus guidelines for the prevention and treatment of catheter-related infections and peritonitis in pediatric patients receiving peritoneal dialysis: 2012 update. Perit Dial Int. 2012;32(Suppl 2):S32–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tönshoff B, Cronin MJ, Reichert M, Haffner D, Wingen AM, Blum WF, et al. Reduced concentration of serum growth hormone (GH)-binding protein in children with chronic renal failure: correlation with GH insensitivity. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. The German Study Group for Growth Hormone Treatment in Chronic Renal Failure. J Clin Endocrinol Metab. 1997;82(4):1007–13.

    Article  PubMed  Google Scholar 

  138. Tönshoff B, Blum WF, Wingen AM, Mehls O. Serum insulin-like growth factors (IGFs) and IGF binding proteins 1, 2, and 3 in children with chronic renal failure: relationship to height and glomerular filtration rate. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Clin Endocrinol Metab. 1995;80(9):2684–91.

    PubMed  Google Scholar 

  139. Mak RH, Cheung WW, Roberts CT Jr. The growth hormone-insulin-like growth factor-I axis in chronic kidney disease. Growth Hormon IGF Res. 2008;18(1):17–25.

    Article  CAS  Google Scholar 

  140. Mak RH, Chang SL, Pak YK. Growth impairment of primary chondrocyte cells by serum of rats with chronic renal failure. Exp Mol Med. 2004;36(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  141. Challa A, Chan W, Krieg RJ Jr, Thabet MA, Liu F, Hintz RL, et al. Effect of metabolic acidosis on the expression of insulin-like growth factor and growth hormone receptor. Kidney Int. 1993;44(6):1224–7.

    Article  CAS  PubMed  Google Scholar 

  142. Hanna JD, Santos F, Foreman JW, Chan JC, Han VK. Insulin-like growth factor-I gene expression in the tibial epiphyseal growth plate of growth hormone-treated uremic rats. Kidney Int. 1995;47(5):1374–82.

    Article  CAS  PubMed  Google Scholar 

  143. Haffner D, Schaefer F, Nissel R, Wuhl E, Tonshoff B, Mehls O. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure. N Engl J Med. 2000;343(13):923–30.

    Article  CAS  PubMed  Google Scholar 

  144. Tönshoff B, Haffner D, Mehls O, Dietz M, Ruder H, Blum WF, et al. Efficacy and safety of growth hormone treatment in short children with renal allografts: three year experience. Members of the German Study Group for Growth Hormone Treatment in Children with Renal Allografts. Kidney Int. 1993;44(1):199–207.

    Article  PubMed  Google Scholar 

  145. Hodson EM, Willis NS, Craig JC. Growth hormone for children with chronic kidney disease. Cochrane Database Syst Rev. 2012;2012(2):Cd003264.

    PubMed Central  Google Scholar 

  146. Drube J, Wan M, Bonthuis M, Wuhl E, Bacchetta J, Santos F, et al. Clinical practice recommendations for growth hormone treatment in children with chronic kidney disease. Nat Rev Nephrol. 2019;15(9):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mehls O, Wühl E, Tönshoff B, Schaefer F, Nissel R, Haffner D. Growth hormone treatment in short children with chronic kidney disease. Acta Paediatr. 2008;97(9):1159–64.

    Article  CAS  PubMed  Google Scholar 

  148. Akchurin OM, Kogon AJ, Kumar J, Sethna CB, Hammad HT, Christos PJ, et al. Approach to growth hormone therapy in children with chronic kidney disease varies across North America: the Midwest pediatric nephrology consortium report. BMC Nephrol. 2017;18(1):181.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Akchurin OM, Schneider MF, Mulqueen L, Brooks ER, Langman CB, Greenbaum LA, et al. Medication adherence and growth in children with CKD. Clin J Am Soc Nephrol. 2014;9(9):1519–25.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2760–73.

    Article  PubMed  Google Scholar 

  151. Polinsky MS, Kaiser BA, Stover JB, Frankenfield M, Baluarte HJ. Neurologic development of children with severe chronic renal failure from infancy. Pediatr Nephrol. 1987;1(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  152. Rotundo A, Nevins TE, Lipton M, Lockman LA, Mauer SM, Michael AF. Progressive encephalopathy in children with chronic renal insufficiency in infancy. Kidney Int. 1982;21(3):486–91.

    Article  CAS  PubMed  Google Scholar 

  153. Sedman AB, Wilkening GN, Warady BA, Lum GM, Alfrey AC. Encephalopathy in childhood secondary to aluminum toxicity. J Pediatr. 1984;105(5):836–8.

    Article  CAS  PubMed  Google Scholar 

  154. Madden SJ, Ledermann SE, Guerrero-Blanco M, Bruce M, Trompeter RS. Cognitive and psychosocial outcome of infants dialysed in infancy. Child Care Health Dev. 2003;29(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  155. Fennell RS, Fennell EB, Carter RL, Mings EL, Klausner AB, Hurst JR. Association between renal function and cognition in childhood chronic renal failure. Pediatr Nephrol. 1990;4(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  156. Ledermann SE, Scanes ME, Fernando ON, Duffy PG, Madden SJ, Trompeter RS. Long-term outcome of peritoneal dialysis in infants. J Pediatr. 2000;136(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  157. Gipson DS, Hooper SR, Duquette PJ, Wetherington CE, Stellwagen KK, Jenkins TL, et al. Memory and executive functions in pediatric chronic kidney disease. Child Neuropsychol. 2006;12(6):391–405.

    Article  PubMed  Google Scholar 

  158. Duquette PJ, Hooper SR, Wetherington CE, Icard PF, Gipson DS. Brief report: intellectual and academic functioning in pediatric chronic kidney disease. J Pediatr Psychol. 2007;32(8):1011–7.

    Article  PubMed  Google Scholar 

  159. Mendley SR, Zelko FA. Improvement in specific aspects of neurocognitive performance in children after renal transplantation. Kidney Int. 1999;56(1):318–23.

    Article  CAS  PubMed  Google Scholar 

  160. Popel J, Joffe R, Acton BV, Bond GY, Joffe AR, Midgley J, et al. Neurocognitive and functional outcomes at 5 years of age after renal transplant in early childhood. Pediatr Nephrol. 2019;34(5):889–95.

    Article  PubMed  Google Scholar 

  161. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, Griffith KE, Hemmelgarn BR, Iseki K, Lamb EJ, Levey AS, Riella MC, Shlipak MG, Wang H, White CT, Winearls CG. Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley A. Warady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chadha, V., Foster, B.J., Mak, R.H., Warady, B.A. (2021). Nutrition, Growth, and Development. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_128-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_128-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics