Physiology of the Developing Kidney: Fluid and Electrolyte Homeostasis and Therapy of Basic Disorders (Na/H2O/K/Acid Base)

Living reference work entry

Abstract

The spectrum of clinical conditions requiring the prescription of fluid and electrolyte therapy by pediatric clinicians is vast, ranging from rehydrating otherwise healthy children with acute gastrointestinal illness to correcting life-threatening abnormalities in children with complex chronic disease. Recognition of each child’s individual clinical situation, notably any changes in normal physiology and homeostatic mechanisms that accompany the acute or chronic illness, and each situation’s ultimate goal in respect to volume resuscitation or electrolyte correction is crucial for the provision of the correct combination of fluid and electrolytes in the proper amount of time.

Keywords

Chronic Kidney Disease Serum Sodium Congenital Adrenal Hyperplasia Total Body Water Serum Potassium Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cosnett JE. The origins of intravenous therapy. Lancet. 1989;1:768–71.PubMedGoogle Scholar
  2. 2.
    Blackfan KD, Maxcy KF. Intraperitoneal injection of saline. Am J Dis Child. 1918;15:19–28.Google Scholar
  3. 3.
    Karelitz S, Schick B. Treatment of toxicosis with the aid of a continuous intravenous drip of dextrose solution. Am J Dis Child. 1932;42:781–802.Google Scholar
  4. 4.
    Gamble JL. Early history of fluid replacement therapy. Pediatrics. 1953;11:554–67.PubMedGoogle Scholar
  5. 5.
    Holliday MA. Gamble and Darrow: pathfinders in body fluid physiology and fluid therapy for children, 1914–1964. Pediatr Nephrol. 2000;15:317–24.PubMedGoogle Scholar
  6. 6.
    Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19:823–32.PubMedGoogle Scholar
  7. 7.
    Holliday MA. Body fluid physiology during growth, chapter 13. In: Maxwell MH, Kleeman CR, editors. Clinical disorders of fluid and electrolyte metabolism. 2nd ed. New York: McGraw-Hill; 1972.Google Scholar
  8. 8.
    Holliday MA, Ray PE, Friedman AL. Fluid therapy in children: facts, fashions, and questions. Arch Dis Child. 2007;92:546–50.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Holliday M. The evolution of therapy for dehydration: should deficit therapy still be taught? Pediatrics. 1996;98:171–7.PubMedGoogle Scholar
  10. 10.
    Gavin N, Merrick N, Davidson B. Efficacy of glucose-based oral rehydration therapy. Pediatrics. 1996;98:45–51.PubMedGoogle Scholar
  11. 11.
    Schwartz R. Comments from another student of Gamble and Darrow on fluids. Pediatrics. 1996;98:314.PubMedGoogle Scholar
  12. 12.
    Cumlea WC, Schubert CM, Sun SS, et al. A review of body water status and the effects of age and body fatness in children and adults. J Nutr Health Aging. 2007;11:111–8.Google Scholar
  13. 13.
    Yoshioka T, Iitaka K, Ichikawa I. Body fluid compartments. In: Ichikawa I, editor. Pediatric textbook of fluids and electrolytes. Baltimore: Williams and Wilkins; 1990. p. 14–20.Google Scholar
  14. 14.
    Ritchie RF, Ledue TB, Craig WY. Patient hydration: a major source of laboratory uncertainty. Clin Chem Lab Med. 2007;45:158–66.PubMedGoogle Scholar
  15. 15.
    Rose BD, Rennke HG. Regulation of salt and water balance. In: Rennke HG, Denker BM, editors. Renal Pathophysiology – the essentials. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 31–69.Google Scholar
  16. 16.
    Talbot NB, Crawford JD, Butler AM. Homeostatic limits to safe parenteral fluid therapy. N Eng J Med. 1953;248:1100–8.Google Scholar
  17. 17.
    Al F, Ray PE. Maintenance fluid therapy: what it is and what it is not. Pediatr Nephrol. 2008;23:677–80.Google Scholar
  18. 18.
    Murat I, Dubois MC. Perioperative fluid therapy in pediatrics. Pediatr Anesth. 2008;18:363–70.Google Scholar
  19. 19.
    Choong K, Bohn D. Maintenance parenteral fluids in the critically ill child. J Pediatr (Rio J). 2007;83(2 suppl):S3–10.Google Scholar
  20. 20.
    Rasouli M, Kalantari KR. Comparison of methods for calculating serum osmolality: multivariate linear regression analysis. Clin Chem Lab Med. 2005;43:635–40.PubMedGoogle Scholar
  21. 21.
    Trachtman H. Sodium and water homeostasis. Pediatr Clin North Am. 1995;42:1343–63.PubMedGoogle Scholar
  22. 22.
    Rose BD, Rennke HG. Disorders of water balance: hyponatremia, hypernatremia, and polyuria. In: Rennke HG, Denker BM, editors. Renal pathophysiology – the essentials. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 69–99.Google Scholar
  23. 23.
    Gerigk M, Gnehm HE, Rascher W. Arginine vasopressin and renin in acutely ill children: implication for fluid therapy. Acta Paediatr. 1996;85:550–3.PubMedGoogle Scholar
  24. 24.
    Halberthal M, Halperin ML, Bohn D. Lesson of the week: acute hyponatraemia in children admitted to hospital: retrospective analysis of factors contributing to its development and resolution. BMJ. 2001;322:780–2.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Moritz ML, Ayus JC. Prevention of hospital acquired hyponatremia: a case for using isotonic saline in maintenance fluid therapy. Pediatrics. 2003;111:227–30.PubMedGoogle Scholar
  26. 26.
    Holliday MA, Segar WE, Friedman A. Reducing errors in fluid therapy management. Pediatrics. 2003;111:424–5.PubMedGoogle Scholar
  27. 27.
    Franz MN, Segar WE. The association of various factors with hypernatremic diarrheal dehydration. Am J Dis Child. 1972;97:298–302.Google Scholar
  28. 28.
    Moritz ML, Ayus JC. Preventing neurological complications from dysnatremias in children. Pediatr Nephrol. 2005;20:1687–700.PubMedGoogle Scholar
  29. 29.
    Holliday MA, Friedman AL, We S, et al. Acute hospital-induced hyponatremia in children: a physiologic approach. J Pediatr. 2004;145:584–7.PubMedGoogle Scholar
  30. 30.
    Horn EJ, Geary D, Robb M, et al. Acute hyponatremia related to IV fluid administration in hospitalized children: an observational study. Pediatrics. 2004;113:1279–84.Google Scholar
  31. 31.
    Au AK, Ray PE, McBryde KD, et al. Incidence of postoperative hyponatremia and complications in crucially ill children treated with hypotonic and normotonic solutions. J Pediatr. 2008;152:33–8.PubMedGoogle Scholar
  32. 32.
    Neville KA, Verge CF, Rosenberg AR, et al. Isotonic is better than hypotonic saline for intravenous rehydration of children with gastroenteritis: a prospective randomized study. Arch Dis Child. 2006;91:226–32.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Choong K, Kho ME, Menon K, et al. Hypotonic versus isotonic saline in hospitalized children: a systematic review. Arch Dis Child. 2006;91:828–35.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Way C, Dhamrait R, Wade A, et al. Perioperative fluid therapy in children: a survey of current prescribing practices. Br J Anaesth. 2006;97:371–9.PubMedGoogle Scholar
  35. 35.
    Peters M, Jeck N, Reinalter S, Leonhardt A, Tonshoff B, Klaus GG, et al. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002;112(3):183–90.PubMedGoogle Scholar
  36. 36.
    van Lieburg AF, Knoers NV, Monnens LA. Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 1999;10(9):1958–64.PubMedGoogle Scholar
  37. 37.
    Bockenhauer D, Bichet DG. Inherited secondary nephrogenic diabetes insipidus: concentrating on humans. Am J Physiol Renal Physiol. 2013;304(8):F1037–42.PubMedGoogle Scholar
  38. 38.
    Moses AM, Clayton B. Impairment of osmotically stimulated AVP release in patients with primary polydipsia. Am J Physiol. 1993;265(6 Pt 2):R1247–52.PubMedGoogle Scholar
  39. 39.
    Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol. 1999;10(3):647–63.PubMedGoogle Scholar
  40. 40.
    Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994;264(5155):92–5.PubMedGoogle Scholar
  41. 41.
    Kokko JP. The role of the collecting duct in urinary concentration. Kidney Int. 1987;31(2):606–10.PubMedGoogle Scholar
  42. 42.
    Fujiwara TM, Bichet DG. Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2836–46.PubMedGoogle Scholar
  43. 43.
    Bichet DG. Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28(3):245–51.PubMedGoogle Scholar
  44. 44.
    Hochberg Z, Van Lieburg A, Even L, Brenner B, Lanir N, Van Oost BA, et al. Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation. J Clin Endocrinol Metab. 1997;82(2):686–9.PubMedGoogle Scholar
  45. 45.
    Loonen AJ, Knoers NV, van Os CH, Deen PM. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28(3):252–65.PubMedGoogle Scholar
  46. 46.
    Rosen S, Greenfeld Z, Bernheim J, Rathaus M, Podjarny E, Brezis M. Hypercalcemic nephropathy: chronic disease with predominant medullary inner stripe injury. Kidney Int. 1990;37(4):1067–75.PubMedGoogle Scholar
  47. 47.
    Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996;97(8):1960–8.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Berl T, Linas SL, Aisenbrey GA, Anderson RJ. On the mechanism of polyuria in potassium depletion. The role of polydipsia. J Clin Invest. 1977;60(3):620–5.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF. Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis. 2005;45(4):626–37.PubMedGoogle Scholar
  50. 50.
    Grunfeld JP, Rossier BC. Lithium nephrotoxicity revisited. Nat Rev Nephrol. 2009;5(5):270–6.PubMedGoogle Scholar
  51. 51.
    Schliefer K, Rockstroh JK, Spengler U, Sauerbruch T. Nephrogenic diabetes insipidus in a patient taking cidofovir. Lancet. 1997;350(9075):413–4.PubMedGoogle Scholar
  52. 52.
    Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.PubMedGoogle Scholar
  53. 53.
    Wesche D, Deen PM, Knoers NV. Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol. 2012;27(12):2183–204.PubMedGoogle Scholar
  54. 54.
    Earley LE, Orloff J. The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest. 1962;41(11):1988–97.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Libber S, Harrison H, Spector D. Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J Pediatr. 1986;108(2):305–11.PubMedGoogle Scholar
  56. 56.
    Berl T, Raz A, Wald H, Horowitz J, Czaczkes W. Prostaglandin synthesis inhibition and the action of vasopressin: studies in man and rat. Am J Physiol. 1977;232(6):F529–37.PubMedGoogle Scholar
  57. 57.
    Stasior DS, Kikeri D, Duel B, Seifter JL. Nephrogenic diabetes insipidus responsive to indomethacin plus dDAVP. N Engl J Med. 1991;324(12):850–1.PubMedGoogle Scholar
  58. 58.
    Fine LG, Schlondorff D, Trizna W, Gilbert RM, Bricker NS. Functional profile of the isolated uremic nephron. Impaired water permeability and adenylate cyclase responsiveness of the cortical collecting tubule to vasopressin. J Clin Invest. 1978;61(6):1519–27.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Tannen RL, Regal EM, Dunn MJ, Schrier RW. Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N Engl J Med. 1969;280(21):1135–41.PubMedGoogle Scholar
  60. 60.
    Kleeman CR, Adams DA, Maxwell MH. An evaluation of maximal water diuresis in chronic renal disease. I. Normal solute intake. J Lab Clin Med. 1961;58:169–84.PubMedGoogle Scholar
  61. 61.
    Teitelbaum I, McGuinness S. Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA. J Clin Invest. 1995;96(1):378–85.PubMedCentralPubMedGoogle Scholar
  62. 62.
    da Silva Jr GB, Liborio AB, Daher Ede F. New insights on pathophysiology, clinical manifestations, diagnosis, and treatment of sickle cell nephropathy. Ann Hematol. 2011;90(12):1371–9.PubMedGoogle Scholar
  63. 63.
    Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol. 2009;20(1):23–35.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, et al. Uromodulin storage diseases: clinical aspects and mechanisms. Am J Kidney Dis. 2004;44(6):987–99.PubMedGoogle Scholar
  65. 65.
    Jeck N, Schlingmann KP, Reinalter SC, Komhoff M, Peters M, Waldegger S, et al. Salt handling in the distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R782–95.PubMedGoogle Scholar
  66. 66.
    Bockenhauer D, van’t Hoff W, Dattani M, Lehnhardt A, Subtirelu M, Hildebrandt F, et al. Secondary nephrogenic diabetes insipidus as a complication of inherited renal diseases. Nephron Physiol. 2010;116(4):23–9.Google Scholar
  67. 67.
    Bogdanovic R, Stajic N, Putnik J, Paripovic A. Transient type 1 pseudo-hypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol. 2009;24(11):2167–75.PubMedGoogle Scholar
  68. 68.
    Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G. Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr. 1983;103(3):375–80.PubMedGoogle Scholar
  69. 69.
    Harris RH, Yarger WE. The pathogenesis of post-obstructive diuresis. The role of circulating natriuretic and diuretic factors, including urea. J Clin Invest. 1975;56(4):880–7.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Choi M, Szerlip HM. Sodium and volume homeostasis. In: Szerlip HM, Goldfarb S, editors. Workshops in fluid and electrolyte disorders. New York: Churchill Livingstone; 1993. p. 1–24.Google Scholar
  71. 71.
    Pasantes-Morales H, Lezama RA, Ramos-Mandujano G, et al. Mechanisms of cell volume regulation in hypo-osmolality. Am J Med. 2006;119:S4–11.PubMedGoogle Scholar
  72. 72.
    Strange K. Cellular volume homeostasis. Adv Physiol Educ. 2004;28:155–9.PubMedGoogle Scholar
  73. 73.
    DePetris L, Luchetti A, Emma F. Cell volume regulation and transport mechanisms across the blood–brain barrier: implications for the management of hypernatremic states. Eur J Pediatr. 2001;160:71–7.Google Scholar
  74. 74.
    Rose BD. Hypoosmolal states – hyponatremia. In: Rose BD, Post TW, editors. Clinical physiology of acid–base and electrolyte disorders. 5th ed. New York: McGraw-Hill; 2001. p. 696–745.Google Scholar
  75. 75.
    Conley SB. Hypernatremia. Pediatr Clin North Am. 1990;37:365–72.PubMedGoogle Scholar
  76. 76.
    Robertson GL. Physiology of ADH secretion. Kidney Int. 1987;32 suppl 21:S20–6.Google Scholar
  77. 77.
    Yang CW, Kim YS, Park IS, Chang YS, Yoon YS, Bang BK. Treatment of severe acute hypernatremia and renal failure by hemodialysis. Nephron. 1995;70:372–3.PubMedGoogle Scholar
  78. 78.
    Pazmino PA, Pazmino BP. Treatment of acute hypernatremia with hemodialysis. Am J Nephrol. 1993;13:260–5.PubMedGoogle Scholar
  79. 79.
    Molteni KH. Initial management of hypernatremic dehydration in the breastfed infant. Clin Pediatr. 1994;33:731–40.Google Scholar
  80. 80.
    Carr M, Gill D. Polyuria, polydipsia, polyposia: “Mummy I want a drink”. Arch Dis Child Educ Pact Ed. 2007;92:ep139–43.Google Scholar
  81. 81.
    Robertson GL. Abnormalities of thirst regulation. Kidney Int. 1984;25:460–9.PubMedGoogle Scholar
  82. 82.
    Murphy MS. Guidelines for managing acute gastroenteritis based on a systematic review of published research. Arch Dis Child. 1998;79:279–84.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Saavedra JM, Harris GD, Li S, Finberg L. Capillary refilling (skin turgor) in the assessment of dehydration. Am J Dis Child. 1991;145:296–8.PubMedGoogle Scholar
  84. 84.
    Gorelick MS, Shaw KN, Baker MD. Effects of ambient temperature on capillary refill in children. Pediatrics. 1993;92:699–702.PubMedGoogle Scholar
  85. 85.
    Baraff LJ. Capillary refill: is it a useful clinical sign? Pediatrics. 1993;92:723–4.PubMedGoogle Scholar
  86. 86.
    Duggan C, Refat M, Hashem M, Wolff M, Fayad I, Santosham M. How valid are clinical signs of dehydration in infants? J Pediatr Gastroenterol Nutr. 1996;22:56–61.PubMedGoogle Scholar
  87. 87.
    Mackenzie A, Barnes G, Shann F. Clinical signs of dehydration in children. Lancet. 1989;2:605–7.PubMedGoogle Scholar
  88. 88.
    Vega RM, Avner JR. A prospective study of the usefulness of clinical and laboratory parameters for predicting percentage of dehydration in children. Pediatr Emerg Care. 1997;13:179–82.PubMedGoogle Scholar
  89. 89.
    Teach SJ, Yates EW, Feld LG. Laboratory predictors of fluid deficit in acutely dehydrated children. Clinical Pediatr (Phila). 1997;36:395–400.Google Scholar
  90. 90.
    Yilmaz K, Karabocuoglu M, Citak A, Uzel N. Evaluation of laboratory tests in dehydrated children with acute gastroenteritis. J Paediatr Child Health. 2002;38:226–8.PubMedGoogle Scholar
  91. 91.
    Conway SP, Phillips RR, Panday S. Admission to hospital with gastroenteritis. Arch Dis Child. 1990;65:579–84.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Jenkins HR, Ansari BM. Management of gastroenteritis. Arch Dis Child. 1990;65:939–41.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Ellis ME, Watson B, Mandal BK, Dunbar EM, Mokashi A. Contemporary gastroenteritis of infancy: clinical features and prehospital management. BMJ. 1984;288:521–3.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Armon K, Stephenson T, McFaul R, Eccleston P, Werneke U. An evidence and consensus based guideline for acute diarrhoea management. Arch Dis Child. 2001;85:132–41.PubMedCentralPubMedGoogle Scholar
  95. 95.
    American Academy of Pediatrics. Provisional Committee on Quality Improvement Subcommittee on Acute Gastroenteritis. Practice parameter: the management of acute gastroenteritis in young children. Pediatrics. 1996;97:424–36.Google Scholar
  96. 96.
    US Department of Health and Human Services. The management of acute diarrhea in children: oral rehydration, maintenance, and nutritional therapy. MMWR. 1992;41:1–20.Google Scholar
  97. 97.
    Pierce NF, Sack RB, Mitra R, Banwell JG, Brigham KL, Fedson DS, Mondal A. Replacement of electrolyte and water losses in cholera by an oral glucose-electrolyte solution. Ann Intern Med. 1969;70:1173–81.PubMedGoogle Scholar
  98. 98.
    Mahalanbais D, Wallace CK, Kallen RJ, Mandel A, Pierce NF. Water and electrolyte losses due to cholera in small children and infants: a recovery balance study. Pediatrics. 1970;45:374–85.Google Scholar
  99. 99.
    Pizzaro D, Posada G, Mata L, Nalin D, Mohs E. Oral rehydration of neonates with dehydrating diarrhoea. Lancet. 1979;2:1209–10.Google Scholar
  100. 100.
    American Academy of Pediatrics Committee on Nutrition. Use of oral fluid therapy and posttreatment feeding following enteritis in children in a developed country. Pediatrics. 1985;75:358–61.Google Scholar
  101. 101.
    Santosham M, Greenough WB. Oral rehydration therapy: a global perspective. J Pediatr. 1991;118:S44–51.PubMedGoogle Scholar
  102. 102.
    World Health Organization. Treatment and prevention of dehydration in diarrheal disease. A guide for use at the primary level. Geneva: WHO; 1976.Google Scholar
  103. 103.
    World Health Organization. Cholera: can rehydration therapy be improved? WHO Drug Inf. 2000;14:88.Google Scholar
  104. 104.
    Snyder JD. Use and misuse of oral therapy for diarrhea: comparisons of US practices with American Academy of Pediatrics recommendations. Pediatrics. 1991;87:28–33.PubMedGoogle Scholar
  105. 105.
    Santosham M, Daum RS, Dillman L, et al. Oral rehydration therapy of infantile diarrhea: a controlled study of well nourished children hospitalized in the United States and Panama. N Eng J Med. 1986;306:1070–6.Google Scholar
  106. 106.
    Finberg L. The role of oral electrolyte-glucose solutions in hydration for children – international and domestic aspects. Pediatrics. 1980;96:51–4.Google Scholar
  107. 107.
    Nalin DR, Cash RA, Islam R, Molla M, Phillips RA. Oral maintenance therapy for cholera in adults. Lancet. 1968;2:370–2.PubMedGoogle Scholar
  108. 108.
    Hirschhorn N, Kinzie JL, Sachar D, Northrup RS, Taylor JO, Ahmad SZ, Phillips RA. Decrease in net stool output in cholera during intestinal perfusion with glucose containing solutions. N Eng J Med. 1968;279:176–81.Google Scholar
  109. 109.
    Phillips RA. Water and electrolyte losses in cholera. Fed Proc. 1964;23:705–12.PubMedGoogle Scholar
  110. 110.
    Nalin DR, Harland E, Ramlal A, Swaby D, McDonald J, Gangarosa R, Levine M, Akierman A, Antoine M, Mackenzie K, Johnson B. Comparison of low and high sodium and potassium content in oral rehydration solutions. J Pediatr. 1980;97:848–53.PubMedGoogle Scholar
  111. 111.
    Leung AKC, Taylor PG, Geoffroy L, Darling P. Efficacy and safety of two oral solutions as maintenance therapy for acute diarrhea. Clin Pediatr. 1988;27:359–64.Google Scholar
  112. 112.
    Hahn S, Kim S, Garner P. Reduced osmolarity oral rehydration solution for treating dehydration caused by acute diarrhoea in children. Cochrane Database Syst Rev. 2002;1:CD002847.PubMedGoogle Scholar
  113. 113.
    Feld LG, Kaskel FJ, Schoeneman MJ. The approach to fluid and electrolyte therapy in pediatrics. Adv Pediatr. 1988;35:497–536.PubMedGoogle Scholar
  114. 114.
    Pizarro D, Posada G, Levine MM. Hypernatremic diarrheal dehydration treated with “slow” (12-hour) oral rehydration therapy: a preliminary report. J Pediatr. 1984;104:316–9.PubMedGoogle Scholar
  115. 115.
    Pizarro D, Posada G, Villavicencio N, Mohs E, Levine MM. Oral rehydration in hypernatremic and hyponatremic diarrheal dehydration. Am J Dis Child. 1983;137:730–4.PubMedGoogle Scholar
  116. 116.
    Pizarro D, Posada G, Levine MM, Mohs E. Oral rehydration of infants with acute diarrhoeal dehydration: a practical method. J Trop Med Hyg. 1980;83:241–5.PubMedGoogle Scholar
  117. 117.
    Wittenberg DF, Ramji S. Paediatric diarrhoea – rehydration therapy revisited. Ann Afr Med J. 1995;85:655–8.Google Scholar
  118. 118.
    American Academy of Pediatrics. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. Pediatrics. 2004;114:507.Google Scholar
  119. 119.
    King CK, Glass R, Bressee JS, The Centers for Disease Control and Prevention, et al. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR. 2003;52(RR-16):1–16.PubMedGoogle Scholar
  120. 120.
    Avery ME, Snyder JD. Oral therapy for acute diarrhea: the underused simple solution. N Eng J Med. 1990;323:891–4.Google Scholar
  121. 121.
    Tanzi VL. An econometric study of the adoption of oral rehydration solution in Bangladesh. Diss Abstr Int. 1999;60:1563.Google Scholar
  122. 122.
    Chowdhury AM, Karim F, Sarkar SK, Cash RA, Bhuiya A. The status of ORT (oral rehydration therapy) in Bangladesh: how widely is it used? Health Policy Plan. 1997;12:58–66.PubMedGoogle Scholar
  123. 123.
    Bender BJ, Ozuah PO, Crain EF. Oral rehydration therapy: is anyone drinking? Pediatr Emerg Care. 2007;23:624–6.PubMedGoogle Scholar
  124. 124.
    Santucci KA, Anderson AC, Lewander WJ, Linakis JG. Frozen oral hydration as an alternative to conventional enteral fluids. Arch Pediatr Adolesc Med. 1998;152:142–6.PubMedGoogle Scholar
  125. 125.
    Ladinsky M, Duggan A, Santosham M, Wilson M. The World Health Organization oral rehydration solution in US pediatric practice: a randomized trial to evaluate parent satisfaction. Arch Pediatr Adolesc Med. 2000;154:700–5.PubMedGoogle Scholar
  126. 126.
    Provisional Committee on Quality Improvement, Subcommittee on Acute Gastroenteritis. Practice parameter: the management of acute gastroenteritis in young children. Pediatrics. 1996;97:424–36.Google Scholar
  127. 127.
    Rabbani GH. The search for a better oral rehydration solution for cholera. N Eng J Med. 2000;342:345–7.Google Scholar
  128. 128.
    Fontaine O, Gore SM, Pierce NF. Rice-based oral rehydration solution for treating diarrhoea. Cochrane Database Syst Rev. 2000;2:CD000567.Google Scholar
  129. 129.
    International Study Group on Reduced-Osmolarity ORS Solutions. Multicentre evaluation of reduced-osmolarity oral rehydration salts solution. Lancet. 1995;345:282–5.Google Scholar
  130. 130.
    Hahn S, Kim Y, Garner P. Reduced osmolarity oral rehydration solution for treating dehydration due to diarrhoea in children: systematic review. BMJ. 2001;323:81–5.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Brierley J, Carcillo J, Choong K, et al. Clinical practice parameter for hemodynamic support of pediatric and neonatal shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Chappell D, Jacob M, Hoffman-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.PubMedGoogle Scholar
  133. 133.
    Awazu M, Devarajan P, Stewart CL, Kaskel F, Ichikawa I. “Maintenance” therapy and treatment of dehydration and overhydration. In: Ichikawa I, editor. Pediatric textbook of fluids and electrolytes. Baltimore: Williams and Wilkins; 1990. p. 417–28.Google Scholar
  134. 134.
    Tullis JL. Albumin. 2. Guidelines for clinical uses. JAMA. 1977;237:460–3.PubMedGoogle Scholar
  135. 135.
    Alderson P, Schierhout G, Roberts I, Bunn F. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2000;2:CD000567.PubMedGoogle Scholar
  136. 136.
    Bisonni RS, Holtgrave DR, Lawler F, Marley DS. Colloid versus crystalloids in fluid resuscitation: an analysis of randomized controlled trials. J Fam Pract. 1991;32:387–90.PubMedGoogle Scholar
  137. 137.
    The Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients. BMJ. 1998;317:235–40.Google Scholar
  138. 138.
    Soni N. Wonderful albumin? BMJ. 1995;310:887–8.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Fleck A, Raines G, Hawker F, Trotter J, Wallace P, Ledingham I, Calman KC. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;1:781–4.PubMedGoogle Scholar
  140. 140.
    Nichani S. Albumin: saint or sinner? Arch Dis Child. 1999;81:189.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Carcillo JA, Fields AI, American College of Critical Care Medicine Task Force Committee Members. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med. 2002;30:1365–78.PubMedGoogle Scholar
  142. 142.
    Soderlind M, Salvignol G, Izard P, Lonnqvist PA. Use of albumin, blood transfusion and intraoperative glucose by APA and ADARPEF members: a postal study. Paediatr Anaesth. 2001;11:685–9.PubMedGoogle Scholar
  143. 143.
    Hirschhorn N. The treatment of acute diarrhea in children: an historical and physiological perspective. Am J Clin Nutr. 1980;33:637–63.PubMedGoogle Scholar
  144. 144.
    Skellett S, Mayer A, Durward A, Tibby SM, Murdoch IA. Chasing the base deficit: hyperchloraemic acidosis following 0.9 % saline fluid resuscitation. Arch Dis Child. 2000;83:514–6.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Neville KA, Verge CF, Rosenberg AR, et al. Is hyperchloraemic acidosis a problem in children with gastroenteritis rehydrated with normal saline? Authors’ reply. Arch Dis Child. 2007;92:466.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Durward A, Tibby SM, Skellett S, et al. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr Crit Care Med. 2005;6:281–5.PubMedGoogle Scholar
  147. 147.
    Reid SR, Bonadio WA. Outpatient rapid intravenous rehydration to correct dehydration and resolve vomiting in children with acute gastroenteritis. Ann Emerg Med. 1996;28:318–23.PubMedGoogle Scholar
  148. 148.
    Holliday MA, Friedman AL, Wassner SJ. Extracellular fluid restoration in dehydration: a critique of rapid versus slow. Pediatr Nephrol. 1999;13:292–7.PubMedGoogle Scholar
  149. 149.
    Oh MS, Kim H-J, Carroll HJ. Recommendations for treatment of symptomatic hyponatremia. Nephron. 1995;70:143–50.PubMedGoogle Scholar
  150. 150.
    Pradhan S, Jha R, Singh MN, Gupta S, Phadke RV, Kher V. Central pontine myelinolysis following “slow” correction of hyponatremia. Clin Neurol Neurosurg. 1995;97:340–3.PubMedGoogle Scholar
  151. 151.
    Faber MD, Kupin WL, Heilig CW, Narins RG. Common fluid-electrolyte and acid–base problems in the intensive care unit: selected issues. Semin Nephrol. 1994;14:8–22.PubMedGoogle Scholar
  152. 152.
    Mehta RL. Fluid balance and acute kidney injury: The missing link for predicting adverse outcomes. Nat Clin Pract Nephrol. 2009;5:10–1.PubMedGoogle Scholar
  153. 153.
    Miller NI, Finberg L. Peritoneal dialysis for salt poisoning. N Eng J Med. 1960;263:1347–50.Google Scholar
  154. 154.
    Finberg L, Kiley J, Luttrell CN. Mass accidental salt poisoning in infancy. JAMA. 1963;184:187–90.PubMedGoogle Scholar
  155. 155.
    el-Dahr S, Goez RA, Campbell FG, et al. Rapid correction of acute salt poisoning by peritoneal dialysis. Pediatr Nephrol. 1987;1:602–4.PubMedGoogle Scholar
  156. 156.
    Baer DM, Ernst DJ, Willeford SI, Gambino R. Investigating elevated potassium values. MLO Med Lab Obs. 2006;38:24.PubMedGoogle Scholar
  157. 157.
    Dickinson H, Webb NJA, Chaloner C, Wynn RF, Bonney DK. Pseuohypokalemia associated with leukemic cell lysis during pneumatic tube transport of blood samples. Pediatr Nephrol. 2012;6:1029–31.Google Scholar
  158. 158.
    Krapf R, Caduff P, Wagdi P, Staubli M, Hulter HN. Plasma potassium response to acute respiratory alkalosis. Kidney Int. 1995;47:217.PubMedGoogle Scholar
  159. 159.
    John SK, Rangan Y, Block CA, Koff MD. Life-threatening hyperkalemia from nutritional supplements: uncommon or undiagnosed? Am J Emerg Med. 2011;29:1237.e1.Google Scholar
  160. 160.
    Sandle GI, Hunter M. Apical potassium (BK) channels and enhanced potassium secretion in human colons. Q J Med. 2010;103:85–9.Google Scholar
  161. 161.
    Fontaine B. Periodic paralysis. Adv Genet. 2008;63:3–23.PubMedGoogle Scholar
  162. 162.
    Gil-Ruiz MA, Alcaraz AJ, Maranon RJ, Navarro N, Huidobro B, Luque A. Electrolyte disturbances in acute pyelonephritis. Pediatr Nephrol. 2012;27:429.PubMedGoogle Scholar
  163. 163.
    Kim M, Somers MJG. Fluid and electrolyte physiology and therapy. In: McMillan JA, DeAngelis CD, Feigin RD, editors. Oski’s pediatrics. 4th ed. Baltimore: Lippincott Williams and Wilkins; 2006. p. 54.Google Scholar
  164. 164.
    Hsieh S, White PC. Presentation of primary adrenal insufficiency in childhood. J Clin Endocrinol Metab. 2011;96:E925.PubMedGoogle Scholar
  165. 165.
    Schweiger B, Mortiarty MW. Cadnapaphornchai. Case report: severe neonatal hyperkalemia due to pseudohypoaldosteronism type 1. Curr Opin Pediatr. 2009;21:269.PubMedGoogle Scholar
  166. 166.
    Rodriguez Soriano J, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol. 1990;4:105.PubMedGoogle Scholar
  167. 167.
    Kamel KS, Halperin ML. Intrarenal urea cycling leads to a higher rate of renal excretion of potassium: an hypothesis with clinical implications. Curr Opin Nephrol Hypertens. 2011;20:547–54.PubMedGoogle Scholar
  168. 168.
    Masilamani K, van der Voort J. The management of acute hyperkalemia in neonates and children. Arch Dis Child. 2012;97:376.PubMedGoogle Scholar
  169. 169.
    Helfrich E, deVries TW, van Roon EN. Salbutamol for hyperkalemia in children. Acta Paediatr. 2001;90:1213.PubMedGoogle Scholar
  170. 170.
    Singh BS, Sadiq HF, Noguchi A, Keenan WJ. Efficacy of albuterol inhalation in treatment of hyperkalemia in premature neonates. J Pediatr. 2002;141:16.PubMedGoogle Scholar
  171. 171.
    Janjua HS, Mahan JD, Patel HP, Mentser M, Schwaderer AL. Continuous infusion of a standard combination solution in the management of hyperkalemia. Nephrol Dial Transplant. 2011;26:2503.PubMedGoogle Scholar
  172. 172.
    Bomback AS, Woosley JT, Kshirsagar AV. Colonic necrosis due to sodium polystyrene sulfate (Kayexalate). Am J Emerg Med. 2009;27:753.e1.Google Scholar
  173. 173.
    Mahoney BA, Smith WAD, Lo D, Tsoi K, Tonelli M, Clase C. Emergency interventions for hyperkalaemia. Cochrane Database Syst Rev. 2005; (2), Art. No.:CD003235. doi:10.1002/14651858.CD003235.pub2.Google Scholar
  174. 174.
    Sterns RH, Rojas M, Bernstein P, Chennupati S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J Am Soc Nephrol. 2010;21:733.PubMedGoogle Scholar
  175. 175.
    Chhapola V, Kanwal SK, Sharma R, Kumar V. A comparative study on reliability of point of care sodium and potassium estimation in a pediatric intensive care unit. Indian J Pediatr. 2013;80(9):731–5.PubMedGoogle Scholar
  176. 176.
    Cummings BM, Macklin EA, Yager PH, Sharma A, Noviski N. Potassium abnormalities in a pediatric intensive care unit: frequency and severity. J Intensive Care Med. 2014;5:269–74.Google Scholar
  177. 177.
    Singhi S, Marudkar A. Hypokalemia in a pediatric intensive care unit. Indian Pediatr. 1996;33(1):9–14.PubMedGoogle Scholar
  178. 178.
    Subba Rao SD, Thomas B. Electrolyte abnormalities in children admitted to pediatric intensive care unit. Indian Pediatr. 2000;37(12):1348–53.PubMedGoogle Scholar
  179. 179.
    Linshaw MA. Potassium homeostasis and hypokalemia. Pediatr Clin North Am. 1987;34(3):649–81.PubMedGoogle Scholar
  180. 180.
    Schaefer TJ, Wolford RW. Disorders of potassium. Emerg Med Clin North Am. 2005;23(3):723–47. 3.PubMedGoogle Scholar
  181. 181.
    Saikaley A, Bichet D, Kucharczyk J, Peterson LN. Neuroendocrine factors mediating polydipsia induced by dietary Na, Cl, and K depletion. Am J Physiol. 1986;251:R1071–7.PubMedGoogle Scholar
  182. 182.
    Wilson JLL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol. 2013; 17(6). doi:10.1007/s10157-013-0789-5, 10.1007/s10157-013-0789-5.Google Scholar
  183. 183.
    Greenlee M, Wingo CS, McDonough AA, Youn JH, Kone BC. Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med. 2009;150(9):619–25.PubMedGoogle Scholar
  184. 184.
    Talbert A, Thuo N, Karisa J, Chesaro C, Ohuma E, Ignas J, et al. Diarrhoea complicating severe acute malnutrition in Kenyan children: a prospective descriptive study of risk factors and outcome. PLoS One. 2012;7(6):e38321.PubMedCentralPubMedGoogle Scholar
  185. 185.
    Krebs SE, Flood RG, Peter JR, Gerard JM. Evaluation of a high-dose continuous albuterol protocol for treatment of pediatric asthma in the emergency department. Pediatr Emerg Care. 2013;29(2):191–6.PubMedGoogle Scholar
  186. 186.
    Habashy D, Lam LT, Browne GJ. The administration of beta2-agonists for paediatric asthma and its adverse reaction in Australian and New Zealand emergency departments: a cross-sectional survey. Eur J Emerg Med. 2003;10(3):219–24.PubMedGoogle Scholar
  187. 187.
    Chan A, Shinde R, Chow CC, Cockram CS, Swaminathan R. In vivo and in vitro sodium pump activity in subjects with thyrotoxic periodic paralysis. BMJ. 1991;303(6810):1096–9.PubMedCentralPubMedGoogle Scholar
  188. 188.
    Yanturali S, Aksay E, Demir OF, Atilla R. Massive hydroxychloroquine overdose. Acta Anaesthesiol Scand. 2004;48(3):379–81.PubMedGoogle Scholar
  189. 189.
    Malik AR, Wolf PK, Ravasia S. Hypokalemia from risperidone and quetiapine overdose. Can J Psychiatry. 2005;50(1):76.PubMedGoogle Scholar
  190. 190.
    Deepthiraju B, Varma PR. Barium toxicity a rare presentation of fireworks ingestion. Indian Pediatr. 2014;49(9):762.Google Scholar
  191. 191.
    Glauser J. Cardiac arrhythmias, respiratory failure, and profound hypokalemia in a trauma patient. Cleve Clin J Med. 2001;68(5):401, 5–10, 13.PubMedGoogle Scholar
  192. 192.
    Molla AM, Rahman M, Sarker SA, Sack DA, Molla A. Stool electrolyte content and purging rates in diarrhea caused by rotavirus, enterotoxigenic E. coli, and V. cholerae in children. J Pediatr. 1981;98(5):835–8.PubMedGoogle Scholar
  193. 193.
    Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R. Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr. 2001;138(5):715–20.PubMedGoogle Scholar
  194. 194.
    Dutta A, Palazzi DL. Risk factors of amphotericin B toxicity in the nonneonatal pediatric population. Pediatr Infect Dis J. 2012;31(9):910–4.PubMedGoogle Scholar
  195. 195.
    Bianchetti MG, Kanaka C, Ridolfi-Luthy A, Hirt A, Wagner HP, Oetliker OH. Persisting renotubular sequelae after cisplatin in children and adolescents. Am J Nephrol. 1991;11(2):127–30.PubMedGoogle Scholar
  196. 196.
    Moffett BS, McDade E, Rossano JW, Dickerson HA, Nelson DP. Enteral potassium supplementation in a pediatric cardiac intensive care unit: evaluation of a practice change. Pediatr Crit Care Med. 2011;12(5):552–4.PubMedGoogle Scholar
  197. 197.
    Knudson JD, Lowry AW, Price JF, Moffett BS. Response to intravenous potassium chloride supplementation in pediatric cardiac intensive care patients. Pediatr Cardiol. 2013;34(4):887–92.PubMedGoogle Scholar
  198. 198.
    Marquardt K, Albertson TE. Treatment of hydroxychloroquine overdose. Am J Emerg Med. 2001;19(5):420–4.PubMedGoogle Scholar
  199. 199.
    Lin YC, Chen HZ, Chang TJ, Lane HY. Hypokalemia following rapid titration of quetiapine treatment. J Clin Psychiatry. 2008;69(1):165–6.PubMedGoogle Scholar
  200. 200.
    Vormann J, Remer T. Dietary, metabolic, physiologic, and disease-related aspects of acid–base balance: foreword to the contributions of the second international acid–base symposium. J Nutr. 2008;138(2):413S–4.PubMedGoogle Scholar
  201. 201.
    Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994;59(6):1356–61.PubMedGoogle Scholar
  202. 202.
    Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54.PubMedGoogle Scholar
  203. 203.
    Palmer BF, Alpern RJ. Normal acid-base balance. In: Feehaly J, Feehally J, Johnson RJ, editors. Comprehensive clinical nephrology. 3rd ed. Philadelphia: Elsevier; 2007. p. 141–6.Google Scholar
  204. 204.
    Manz F, Kalhoff H, Remer T. Renal acid excretion in early infancy. Pediatr Nephrol. 1997;11(2):231–43.PubMedGoogle Scholar
  205. 205.
    Baum M, Quigley R. Maturation of proximal tubular acidification. Pediatr Nephrol. 1993;7(6):785–91.PubMedGoogle Scholar
  206. 206.
    Schwartz GJ, Evan AP. Development of solute transport in rabbit proximal tubule. III. Na-K-ATPase activity. Am J Physiol. 1984;246(6 Pt 2):F845–52.PubMedGoogle Scholar
  207. 207.
    Karashima S, Hattori S, Ushijima T, Furuse A, Nakazato H, Matsuda I. Developmental changes in carbonic anhydrase II in the rat kidney. Pediatr Nephrol. 1998;12(4):263–8.PubMedGoogle Scholar
  208. 208.
    Matsumoto T, Fejes-Toth G, Schwartz GJ. Postnatal differentiation of rabbit collecting duct intercalated cells. Pediatr Res. 1996;39(1):1–12.PubMedGoogle Scholar
  209. 209.
    Bushinsky DA, Coe FL, Katzenberg C, Szidon JP, Parks JH. Arterial PCO2 in chronic metabolic acidosis. Kidney Int. 1982;22(3):311–4.PubMedGoogle Scholar
  210. 210.
    Fulop M. A guide for predicting arterial CO2 tension in metabolic acidosis. Am J Nephrol. 1997;17(5):421–4.PubMedGoogle Scholar
  211. 211.
    Arbus GS, Herbert LA, Levesque PR, Etsten BE, Schwartz WB. Characterization and clinical application of the “significance band” for acute respiratory alkalosis. N Engl J Med. 1969;280(3):117–23.PubMedGoogle Scholar
  212. 212.
    Martinu T, Menzies D, Dial S. Re-evaluation of acid–base prediction rules in patients with chronic respiratory acidosis. Can Respir J. 2003;10(6):311–5.PubMedGoogle Scholar
  213. 213.
    Adrogue HJ, Madias NE. Secondary responses to altered acid–base status: the rules of engagement. J Am Soc Nephrol. 2010;21(6):920–3.PubMedGoogle Scholar
  214. 214.
    Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid–base equilibrium. N Engl J Med. 1991;324(20):1394–401.PubMedGoogle Scholar
  215. 215.
    Guignard JP, Santos F. Laboratory investigations. In: Avner ED, Harmon W, Niaudet P, editors. Pediatric nephrology. Philadelphia: Lippincott-Williams and Wilkins; 2004. p. 404.Google Scholar
  216. 216.
    Feldman M, Soni N, Dickson B. Influence of hypoalbuminemia or hyperalbuminemia on the serum anion gap. J Lab Clin Med. 2005;146(6):317–20.PubMedGoogle Scholar
  217. 217.
    Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318(10):594–9.PubMedGoogle Scholar
  218. 218.
    Owen OE, Licht JH, Sapir DG. Renal function and effects of partial rehydration during diabetic ketoacidosis. Diabetes. 1981;30(6):510–8.PubMedGoogle Scholar
  219. 219.
    Carlisle EJ, Donnelly SM, Vasuvattakul S, Kamel KS, Tobe S, Halperin ML. Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol. 1991;1(8):1019–27.PubMedGoogle Scholar
  220. 220.
    Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27(1):42–7.PubMedGoogle Scholar
  221. 221.
    Galla JH. Metabolic alkalosis. J Am Soc Nephrol. 2000;11(2):369–75.PubMedGoogle Scholar
  222. 222.
    Sabatini S, Kurtzman NA. The maintenance of metabolic alkalosis: factors which decrease bicarbonate excretion. Kidney Int. 1984;25(2):357–61.PubMedGoogle Scholar
  223. 223.
    Berger BE, Cogan MG, Sebastian A. Reduced glomerular filtration and enhanced bicarbonate reabsorption maintain metabolic alkalosis in humans. Kidney Int. 1984;26(2):205–8.PubMedGoogle Scholar
  224. 224.
    Galla JH, Bonduris DN, Luke RG. Effects of chloride and extracellular fluid volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat. Reassessment of the classical hypothesis of the pathogenesis of metabolic alkalosis. J Clin Invest. 1987;80(1):41–50.PubMedCentralPubMedGoogle Scholar
  225. 225.
    Adam WR, Koretsky AP, Weiner MW. 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Physiol. 1986;251(5 Pt 2):F904–10.PubMedGoogle Scholar
  226. 226.
    Wesson DE. Augmented bicarbonate reabsorption by both the proximal and distal nephron maintains chloride-deplete metabolic alkalosis in rats. J Clin Invest. 1989;84(5):1460–9.PubMedCentralPubMedGoogle Scholar
  227. 227.
    Harrington JT, Hulter HN, Cohen JJ, Madias NE. Mineralocorticoid-stimulated renal acidification: the critical role of dietary sodium. Kidney Int. 1986;30(1):43–8.PubMedGoogle Scholar
  228. 228.
    Navaneethan SD, Singh S, Appasamy S, Wing RE, Sehgal AR. Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53(4):617–27.PubMedGoogle Scholar
  229. 229.
    Capasso G, Jaeger P, Giebisch G, Guckian V, Malnic G. Renal bicarbonate reabsorption in the rat. II. Distal tubule load dependence and effect of hypokalemia. J Clin Invest. 1987;80(2):409–14.PubMedCentralPubMedGoogle Scholar
  230. 230.
    Schuster VL. Cortical collecting duct bicarbonate secretion. Kidney Int Suppl. 1991;33:S47–50.PubMedGoogle Scholar
  231. 231.
    Javaheri S, Kazemi H. Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis. 1987;136(4):1011–6.PubMedGoogle Scholar
  232. 232.
    Javaheri S, Shore NS, Rose B, Kazemi H. Compensatory hypoventilation in metabolic alkalosis. Chest. 1982;81(3):296–301.PubMedGoogle Scholar
  233. 233.
    Rastegar A. Use of the DeltaAG/DeltaHCO3- ratio in the diagnosis of mixed acid–base disorders. J Am Soc Nephrol. 2007;18(9):2429–31.PubMedGoogle Scholar
  234. 234.
    Moffett BS, Moffett TI, Dickerson HA. Acetazolamide therapy for hypochloremic metabolic alkalosis in pediatric patients with heart disease. Am J Ther. 2007;14(4):331–5.PubMedGoogle Scholar
  235. 235.
    Buchanan IB, Campbell BT, Peck MD, Cairns BA. Chest wall necrosis and death secondary to hydrochloric acid infusion for metabolic alkalosis. South Med J. 2005;98(8):822–4.PubMedGoogle Scholar
  236. 236.
    Bushinsky DA, Gennari FJ. Life-threatening hyperkalemia induced by arginine. Ann Intern Med. 1978;89(5 Pt 1):632–4.PubMedGoogle Scholar
  237. 237.
    Green J, Kleeman CR. Role of bone in regulation of systemic acid–base balance. Kidney Int. 1991;39(1):9–26.PubMedGoogle Scholar
  238. 238.
    Krieger NS, Frick KK, Bushinsky DA. Mechanism of acid-induced bone resorption. Curr Opin Nephrol Hypertens. 2004;13(4):423–36.PubMedGoogle Scholar
  239. 239.
    McSherry E, Morris Jr RC. Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest. 1978;61(2):509–27.PubMedCentralPubMedGoogle Scholar
  240. 240.
    Challa A, Krieg Jr RJ, Thabet MA, Veldhuis JD, Chan JC. Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol. 1993;265(4 Pt 1):E547–53.PubMedGoogle Scholar
  241. 241.
    Ordonez FA, Santos F, Martinez V, Garcia E, Fernandez P, Rodriguez J, et al. Resistance to growth hormone and insulin-like growth factor-I in acidotic rats. Pediatr Nephrol. 2000;14(8–9):720–5.PubMedGoogle Scholar
  242. 242.
    KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013;3:5–14.Google Scholar
  243. 243.
    Alexy U, Kersting M, Remer T. Potential renal acid load in the diet of children and adolescents: impact of food groups, age and time trends. Public Health Nutr. 2008;11(3):300–6.PubMedGoogle Scholar
  244. 244.
    Oettinger CW, Oliver JC. Normalization of uremic acidosis in hemodialysis patients with a high bicarbonate dialysate. J Am Soc Nephrol. 1993;3(11):1804–7.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of NephrologyChildren’s HospitalNew OrleansUSA
  2. 2.Division of NephrologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations