Physiology of the Developing Kidney: Disorders and Therapy of Calcium and Phosphorous Homeostasis

  • Amita Sharma
  • Rajesh V. Thakker
  • Harald Jüppner
Living reference work entry


The regulation of calcium and phosphate homeostasis involves several different hormones that act on the kidney, intestine, and bone. The most important calcium-regulating peptide hormone is parathyroid hormone (PTH). Its production and secretion by the parathyroid glands increases in response to a decrease in the extracellular calcium concentration. PTH increases (1) the 1α-hydroxylase activity in the proximal renal tubules to promote production of the biologically active 1,25-dihydroxyvitamin D (1,25(OH)2D) from its precursor 25-hydroxyvitamin D, thereby enhancing intestinal absorption of calcium (and phosphorus); (2) it stimulates bone resorption, thus releasing calcium and (phosphorus); (3) it enhances calcium reabsorption in the distal renal tubules; and (4) it promotes urinary phosphate excretion. These phosphaturic actions of PTH occur within minutes by reducing the expression of two sodium-dependent phosphate cotransporters, NPT2a and NPT2c, in the proximal convoluted tubules. The long-term regulation of phosphate homeostasis involves fibroblast growth factor 23 (FGF23), a more recently discovered hormone made by osteocytes and probably osteoblasts. Like PTH, FGF23 reduces the expression of NPT2a and NPT2c, but the time courses for the effects of both hormones are very different [1–3]. Furthermore, in contrast to the stimulatory actions of PTH on 1α-hydroxylase, FGF23 reduces the expression of this enzyme in the proximal renal tubules, and it enhances 24-hydroxylase, leading to two different mechanisms to a reduction in serum 1, 25(OH)2D levels [4–8].


Bartter Syndrome Familial Hypocalciuric Hypercalcemia Urinary Phosphate Excretion Oncogenic Osteomalacia Autosomal Dominant Hypophosphatemic Rickets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch. 2003;446(5):585–92.PubMedGoogle Scholar
  2. 2.
    Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol. 2007;292(1):F395–403.PubMedGoogle Scholar
  3. 3.
    Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol. 2007;27(5):503–15.PubMedGoogle Scholar
  4. 4.
    Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun. 2004;314(2):409–14.PubMedGoogle Scholar
  5. 5.
    Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145(7):3087–94.PubMedGoogle Scholar
  6. 6.
    Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001;98(11):6500–5.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology. 2002;143:3179–82.PubMedGoogle Scholar
  8. 8.
    Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem. 2003;278(11):9843–9.PubMedGoogle Scholar
  9. 9.
    Jueppner H, Thakker RV. In: Pollack M, editor. The Kidney. Philadelphia: WB Saunders; 2008. p. 311–45.Google Scholar
  10. 10.
    Gardella TJ, Jüppner H, Brown EM, Kronenberg HM, Potts Jr JT. Parathyroid hormone and parathyroid hormone-related peptide in the regulation of calcium homeostasis and bone development. In: DeGroot LJ, Jameson JL, editors. Endocrinology, vol. 1. 6th ed. Philadelphia: W.B. Saunders; 2010. p. 1040–73.Google Scholar
  11. 11.
    Okazaki T, Igarashi T, Kronenberg HM. 5'-Flanking region of the parathyroid hormone gene mediates negative regulation by 1,25(OH)2 vitamin D3. J Biol Chem. 1989;263:2203–8.Google Scholar
  12. 12.
    Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that bind the 1,25- dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89(17):8097–101.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Naveh-Many T, Rahaminov R, Livini N, Silver J. Parathyroid cell proliferation in normal and chronic renal failure in rats. The effects of calcium, phosphate, and vitamin D. J Clin Invest. 1995;96:1786–93.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, et al. Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res Off J Am Soc Bone Miner Res. 1996;11(7):970–6.Google Scholar
  15. 15.
    Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97:2534–40.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hebert SC. Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int. 1996;50(6):2129–39.PubMedGoogle Scholar
  17. 17.
    Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987;237:893–6.PubMedGoogle Scholar
  18. 18.
    Mangin M, Webb AC, Dreyer BE, Posillico JT, Ikeda K, Weir EC, et al. Identification of a cDNA encoding a parathyroid hormone-like peptide from a human tumor associated with humoral hypercalcemia of malignancy. Proc Natl Acad Sci U S A. 1988;85:597–601.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Strewler GJ, Stern PH, Jacobs JW, Eveloff J, Klein RF, Leung SC, et al. Parathyroid hormone-like protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J Clin Invest. 1987;80:1803–7.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Broadus AE, Stewart AF. Parathyroid hormone-related protein: structure, processing, and physiological actions. In: Bilezikian JP, Levine MA, Marcus R, editors. The parathyroids basic and clinical concepts. New York: Raven; 1994. p. 259–94.Google Scholar
  21. 21.
    Strewler GJ. Mechanisms of disease: the physiology of parathyroid hormone-related protein. New Engl J Med. 2000;342:177–85.PubMedGoogle Scholar
  22. 22.
    Kronenberg H. Developmental regulation of the growth plate. Nature. 2003;423:332–6.PubMedGoogle Scholar
  23. 23.
    VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004;113(4):598–608.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Hiremath M, Wysolmerski J. Parathyroid hormone-related protein specifies the mammary mesenchyme and regulates embryonic mammary development. J Mammary Gland Biol Neoplasia. 2013;18(2):171–7.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Jüppner H, Abou-Samra AB, Freeman MW, Kong XF, Schipani E, Richards J, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991;254:1024–6.PubMedGoogle Scholar
  26. 26.
    Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A. 1992;89:2732–6.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Lee K, Deeds JD, Segre GV. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acid during fetal development of rats. Endocrinology. 1995;136:453–63.PubMedGoogle Scholar
  28. 28.
    Usdin TB, Gruber C, Bonner TI. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem. 1995;270:15455–8.PubMedGoogle Scholar
  29. 29.
    Usdin TB, Hoare SRJ, Wang T, Mezey E, Kowalak JA. Tip39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci. 1999;2:941–3.PubMedGoogle Scholar
  30. 30.
    Dimitrov EL, Petrus E, Usdin TB. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp Neurol. 2010;226(1):68–83.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Coutellier L, Usdin TB. Enhanced long-term fear memory and increased anxiety and depression-like behavior after exposure to an aversive event in mice lacking TIP39 signaling. Behav Brain Res. 2011;222(1):265–9.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Whyte MP. Rickets and osteomalacia. In: Wass J, Shalet S, editors. Oxford textbook of endocrinology, Oxford: Oxford University Press; 2002. p. 697–715.Google Scholar
  33. 33.
    Liberman U, Marx SJ. Vitamin D and other calciferols. In: Beaudlt A, Sly W, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 4223–40.Google Scholar
  34. 34.
    Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711–5.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Al Mutair AN, Nasrat GH, Russell DW. Mutation of the CYP2R1 vitamin D 25-hydroxylase in a Saudi Arabian family with severe vitamin D deficiency. J Clin Endocrinol Metab. 2012;97(10):E2022–5.PubMedCentralPubMedGoogle Scholar
  36. 36.
    White KE, Larsson TE, Econs MJ. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev. 2006;27(3):221–41.PubMedGoogle Scholar
  37. 37.
    Haussler MR, Haussler CA, Jurutka PW, Thompson PD, Hsieh JC, Remus LS, et al. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J Endocrinol. 1997;154(Suppl):S57–73.PubMedGoogle Scholar
  38. 38.
    ADHR Consortium T, White KE, Evans WE, O’Riordan JLH, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meittinger T, Strom TM. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.Google Scholar
  39. 39.
    White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metabol. 2001;86(2):497–500.Google Scholar
  40. 40.
    Benet-Pages A, Lorenz-Depiereux B, Zischka H, White K, Econs M, Strom T. FGF23 is processed by proprotein convertases but not by PHEX. Bone. 2004;35:455–62.PubMedGoogle Scholar
  41. 41.
    Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111(15):5520–5.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A. 2010;107:407–12.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Shimada T, Yoneya T, Hino R, Takeuchi Y, Fukumoto S, Yamashita T, editors. Transgenic mice expressing fibroblast growth factor 23 (FGF23) demonstrate hypophosphatemia with low serum 1,25-dihydroxyvitamin D [1,25(OH)2D] and rickets/osteomalacia. Twenty-third Annual Meeting of the American Society for Bone and Mineral Research, Phoenix; 2001; J Bone Mineral ResGoogle Scholar
  44. 44.
    Riminucci M, Collins M, Fedarko N, Cherman N, Corsi A, White K, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112:683–92.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23:421–32.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.PubMedGoogle Scholar
  47. 47.
    Bonewald LF. The amazing osteocyte. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(2):229–38.Google Scholar
  48. 48.
    Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet. 2012;8(5):e1002708.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Mackenzie NC, Zhu D, Milne EM, Van’t Hof R, Martin A, Darryl Quarles L, et al. Altered bone development and an increase in FGF-23 expression in Enpp1(−/−) mice. PLoS One. 2012;7(2):e32177.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248–50.PubMedGoogle Scholar
  52. 52.
    Mäkitie O, Pereira RC, Kaitila I, Turan S, Bastepe M, Laine T, et al. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Miner Res. 2010;25:2165–174.Google Scholar
  53. 53.
    Turan S, Aydin C, Bereket A, Akcay T, Guran T, Yaralioglu BA, et al. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone. 2010;46(2):402–9.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–72.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Nitschke Y, Baujat G, Botschen U, Wittkampf T, du Moulin M, Stella J, et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet. 2012;90(1):25–39.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One. 2012;7(8):e42988.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28(6):1378–85.Google Scholar
  58. 58.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.PubMedGoogle Scholar
  59. 59.
    Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens. 2006;15(4):437–41.PubMedGoogle Scholar
  60. 60.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.PubMedGoogle Scholar
  61. 61.
    Ohnishi M, Nakatani T, Lanske B, Razzaque MS. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int. 2009;75(11):1166–72.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Liu S, Brown T, Zhou J, Xiao Z, Awad H, Guilak F, et al. Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol. 2005;16:1645–53.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol. 2005;289(5):F1088–95.PubMedGoogle Scholar
  65. 65.
    Jan De Beur S, Finnegan R, Vassiliadis J, Cook B, Barberio D, Estes S, et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17:1102–10.Google Scholar
  66. 66.
    Carpenter TO, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, Shimkets R. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab. 2005;90(2):1012–20.PubMedGoogle Scholar
  67. 67.
    Berndt T, Craig T, Bowe A, Vassiliadis J, Reczek D, Finnegan R, et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest. 2003;112:785–94.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Rowe P, Kumagai Y, Gutierrez G, Garrett I, Blacher R, Rosen D, et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone. 2004;34:303–19.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Christov M, Koren S, Yuan Q, Baron R, Lanske B. Genetic ablation of sfrp4 in mice does not affect serum phosphate homeostasis. Endocrinology. 2012;152(5):2031–6.Google Scholar
  70. 70.
    Thakker RV. Molecular genetics of parathyroid disease. Curr Opin Endocrinol Diabetes Obes. 1996;3:521–8.Google Scholar
  71. 71.
    Szabo J, Heath B, Hill VM, Jackson CE, Zarbo RJ, Mallette LE, et al. Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome 1q21-q31. Am J Hum Genet. 1995;56(4):944–50.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32(4):676–80.PubMedGoogle Scholar
  73. 73.
    Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97(9):2990–3011.PubMedGoogle Scholar
  74. 74.
    Hsu SC, Levine MA. Primary hyperparathyroidism in children and adolescents: the Johns Hopkins Children’s Center experience 1984–2001. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17 Suppl 2:N44–50.Google Scholar
  75. 75.
    Arnold A, Brown MF, Urena P, Gaz RD, Sarfati E, Drueke TB. Monoclonality of parathyroid tumors in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest. 1995;95(5):2047–53.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Buchwald PC, Akerstrom G, Westin G. Reduced p18INK4c, p21CIP1/WAF1 and p27KIP1 mRNA levels in tumours of primary and secondary hyperparathyroidism. Clin Endocrinol (Oxf). 2004;60(3):389–93.Google Scholar
  77. 77.
    Bjorklund P, Åkerstrom G, Westin G. Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007;92(1):338–44.PubMedGoogle Scholar
  78. 78.
    Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. New Engl J Med. 2003;348(17):1656–63.PubMedGoogle Scholar
  79. 79.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M, Wesseling-Perry K, et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J Clin Endocrinol Metab. 2010;95(2):578–85.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Smith ER, Cai MM, McMahon LP, Holt SG. Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab. 2012;97(9):3357–65.PubMedGoogle Scholar
  82. 82.
    Larsson T, Zahradnik R, Lavigne J, Ljunggren Ö, Jüppner H, Jonsson K. Immunohistochemical detection of FGF-23 protein in tumors that cause oncogenic osteomalacia. Eur J Endocrinol. 2003;148:269–76.PubMedGoogle Scholar
  83. 83.
    Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15.PubMedGoogle Scholar
  84. 84.
    Portale A, Wolf M, Jüppner H, Cayetano S, Kumar J, Wesseling-Perry K, et al. Disordered FGF23 and mineral metabolism in the chronic kidney disease in children (CKiD) cohort. Clin J Am Soc Nephrol. 2014;9:344–53.Google Scholar
  85. 85.
    Au AY, McDonald K, Gill A, Sywak M, Diamond T, Conigrave AD, et al. PTH mutation with primary hyperparathyroidism and undetectable intact PTH. N Engl J Med. 2008;359(11):1184–6.PubMedGoogle Scholar
  86. 86.
    Janicic N, Soliman E, Pausova Z, Seldin MF, Riviere M, Szpirer J, et al. Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat chromosome 11 and mouse chromosome 16. Mamm Genome Off J Int Mamm Genome Soc. 1995;6(11):798–801.Google Scholar
  87. 87.
    Pollak MR, Brown EM, WuChou YH, Hebert SC, Marx SJ, Steinmann B, et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75:1297–303.PubMedGoogle Scholar
  88. 88.
    Chou YH, Pollak MR, Brandi ML, Toss G, Arnqvist H, Atkinson AB, et al. Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet. 1995;56(5):1075–9.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Pearce S, Trump D, Wooding C, Besser G, Chew S, Grant D, et al. Calcium-sensing receptor mutations in familial benign hypercalcaemia and neonatal hyperparathyroidism. J Clin Invest. 1995;96:2683–92.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Janicic N, Pausova Z, Cole DE, Hendy GN. Insertion of an Alu sequence in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet. 1995;56(4):880–6.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Aida K, Koishi S, Inoue M, Nakazato M, Tawata M, Onaya T. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca(2+)-sensing receptor gene. J Clin Endocrinol Metab. 1995;80(9):2594–8.PubMedGoogle Scholar
  92. 92.
    Heath III H, Odelberg S, Jackson CE, Teh BT, Hayward N, Larsson C, et al. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcemia suggest receptor functional domains. J Clin Endocrinol Metab. 1996;81:1312–7.PubMedGoogle Scholar
  93. 93.
    Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, et al. Mutations affecting G-protein subunit alpha11 in hypercalcemia and hypocalcemia. N Engl J Med. 2013;368(26):2476–86.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Mannstadt M, Harris M, Bravenboer B, Chitturi S, Dreijerink KM, Lambright DG, et al. Germline mutations affecting Galpha11 in hypoparathyroidism. N Engl J Med. 2013;368(26):2532–4.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Nesbit MA, Hannan FM, Howles SA, Reed AA, Cranston T, Thakker CE, et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet. 2013;45(1):93–7.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Lloyd SE, Pannett AA, Dixon PH, Whyte MP, Thakker RV. Localization of familial benign hypercalcemia, Oklahoma variant (FBHOk), to chromosome 19q13. Am J Hum Genet. 1999;64(1):189–95.PubMedCentralPubMedGoogle Scholar
  97. 97.
    McMurtry CT, Schranck FW, Walkenhorst DA, Murphy WA, Kocher DB, Teitelbaum SL, et al. Significant developmental elevation in serum parathyroid hormone levels in a large kindred with familial benign (hypocalciuric) hypercalcemia. Am J Med. 1992;93(3):247–58.PubMedGoogle Scholar
  98. 98.
    Trump D, Whyte MP, Wooding C, Pang JT, Pearce SH, Kocher DB, et al. Linkage studies in a kindred from Oklahoma, with familial benign (hypocalciuric) hypercalcaemia (FBH) and developmental elevations in serum parathyroid hormone levels, indicate a third locus for FBH. Hum Genet. 1995;96(2):183–7.PubMedGoogle Scholar
  99. 99.
    Pearce SH, Bai M, Quinn SJ, Kifor O, Brown EM, Thakker RV. Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest. 1996;98(8):1860–6.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Bai M, Quinn S, Trivedi S, Kifor O, Pearce SH, Pollak MR, et al. Expression and characterization of inactivating and activating mutations in the human Ca2+-sensing receptor. J Biol Chem. 1996;271(32):19537–45.PubMedGoogle Scholar
  101. 101.
    Morten KJ, Cooper JM, Brown GK, Lake BD, Pike D, Poulton J. A new point mutation associated with mitochondrial encephalomyopathy. Hum Mol Genet. 1993;2(12):2081–7.PubMedGoogle Scholar
  102. 102.
    Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.PubMedGoogle Scholar
  103. 103.
    Zajickova K, Vrbikova J, Canaff L, Pawelek PD, Goltzman D, Hendy GN. Identification and functional characterization of a novel mutation in the calcium-sensing receptor gene in familial hypocalciuric hypercalcemia: modulation of clinical severity by vitamin D status. J Clin Endocrinol Metab. 2007;92(7):2616–23.PubMedGoogle Scholar
  104. 104.
    Felderbauer P, Klein W, Bulut K, Ansorge N, Dekomien G, Werner I, et al. Mutations in the calcium-sensing receptor: a new genetic risk factor for chronic pancreatitis? Scand J Gastroenterol. 2006;41(3):343–8.PubMedGoogle Scholar
  105. 105.
    Pollak MR, Chou YH, Marx SJ, Steinmann B, Cole DE, Brandi ML, et al. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest. 1994;93(3):1108–12.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Bai M, Pearce SH, Kifor O, Trivedi S, Stauffer UG, Thakker RV, et al. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+−sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J Clin Invest. 1997;99(1):88–96.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Ward BK, Cameron FJ, Magno AL, McDonnell CM, Stuckey BG, Ratajczak T. A novel homozygous deletion in the calcium-sensing receptor ligand-binding domain associated with neonatal severe hyperparathyroidism. J Pediat Endocrinol Metab. 2006;19(1):93–100.Google Scholar
  108. 108.
    Marx SJ, Fraser D, Rapoport A. Familial hypocalciuric hypercalcemia. Mild expression of the gene in heterozygotes and severe expression in homozygotes. Am J Med. 1985;78(1):15–22.PubMedGoogle Scholar
  109. 109.
    Cole D, Forsythe CR, Dooley JM, Grantmyre EB, Salisbury SR. Primary neonatal hyperparathyroidism: a devastating neurodevelopmental disorder if left untreated. J Craniofac Genet Dev Biol. 1990;10(2):205–14.PubMedGoogle Scholar
  110. 110.
    Toke J, Czirjak G, Patocs A, Enyedi B, Gergics P, Csakvary V, et al. Neonatal severe hyperparathyroidism associated with a novel de novo heterozygous R551K inactivating mutation and a heterozygous A986S polymorphism of the calcium-sensing receptor gene. Clin Endocrinol (Oxf). 2007;67(3):385–92.Google Scholar
  111. 111.
    Kifor O, Moore Jr FD, Delaney M, Garber J, Hendy GN, Butters R, et al. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab. 2003;88(1):60–72.PubMedGoogle Scholar
  112. 112.
    Pallais J, Kifor O, Chen Y, Slovik D, Brown E. Acquired hypocalciuric hypercalcemia due to autoantibodies against the calcium-sensing receptor. N Engl J Med. 2004;351:362–9.PubMedGoogle Scholar
  113. 113.
    Makita N, Sato J, Manaka K, Shoji Y, Oishi A, Hashimoto M, et al. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc Natl Acad Sci U S A. 2007;104(13):5443–8.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Frame B, Poznanski AK. Conditions that may be confused with rickets. In: DeLuca HF, Anast AS, editor. Pediatric diseases related to calcium. New York: Elsevier; 1980. p. 269–89.Google Scholar
  115. 115.
    Jüppner H, Schipani E, Silve C. Jansen’s metaphyseal chondrodysplasia and Blomstrand’s lethal chondrodysplasia: two genetic disorders caused by PTH/PTHrP receptor mutations. In: Bilezikian J, Raisz L, Rodan G, editors. Principles of bone biology, vol. 2. San Diego: Academic; 2002. p. 1117–35.Google Scholar
  116. 116.
    Schipani E, Kruse K, Jüppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995;268:98–100.PubMedGoogle Scholar
  117. 117.
    Schipani E, Langman CB, Parfitt AM, Jensen GS, Kikuchi S, Kooh SW, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med. 1996;335:708–14.PubMedGoogle Scholar
  118. 118.
    Schipani E, Langman CB, Hunzelman J, LeMerrer M, Loke KY, Dillon MJ, et al. A novel PTH/PTHrP receptor mutation in Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 1999;84:3052–7.PubMedGoogle Scholar
  119. 119.
    Minagawa M, Arakawa K, Minamitani K, Yasuda T, Niimi H. Jansen-type metaphyseal chondrodysplasia: analysis of PTH/PTH-related protein receptor messenger RNA by the reverse transcription-polymerase chain method. Endocr J. 1997;44:493–9.PubMedGoogle Scholar
  120. 120.
    Brown WW, Jüppner H, Langman CB, Price H, Farrow EG, White KE, et al. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 2009;94(1):17–20.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Onuchic L, Ferraz-de-Souza B, Mendonca BB, Correa PH, Martin RM. Potential effects of alendronate on fibroblast growth factor 23 levels and effective control of hypercalciuria in an adult with Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 2012;97(4):1098–103.PubMedGoogle Scholar
  122. 122.
    Savoldi G, Izzi C, Signorelli M, Bondioni MP, Romani C, Lanzi G, et al. Prenatal presentation and postnatal evolution of a patient with Jansen metaphyseal dysplasia with a novel missense mutation in PTH1R. Am J Med Genet A. 2013;161(10):2614–9.Google Scholar
  123. 123.
    Schipani E, Lanske B, Hunzelman J, Kovacs CS, Lee K, Pirro A, et al. Targeted expression of constitutively active PTH/PTHrP receptors delays endochondral bone formation and rescues PTHrP-less mice. Proc Natl Acad Sci U S A. 1997;94:13689–94.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Beier F, LuValle P. The cyclin D1 and cyclin a genes are targets of activated PTH/PTHrP receptors in Jansen’s metaphyseal chondrodysplasia. Mol Endocrinol. 2002;16(9):2163–73.PubMedGoogle Scholar
  125. 125.
    Bastepe M, Raas-Rothschild A, Silver J, Weissman I, Jüppner H, Gillis D. A form of Jansen’s metaphyseal chondrodysplasia with limited metabolic and skeletal abnormalities is caused by a novel activating PTH/PTHrP receptor mutation. J Clin Endocrinol Metab. 2004;89:3595–600.PubMedGoogle Scholar
  126. 126.
    Schipani E, Jensen GS, Pincus J, Nissenson RA, Gardella TJ, Jüppner H. Constitutive activation of the cAMP signaling pathway by parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptors mutated at the two loci for Jansen’s metaphyseal chondrodysplasia. Mol Endocrinol. 1997;11:851–8.PubMedGoogle Scholar
  127. 127.
    Pober BR. Williams-Beuren syndrome. N Engl J Med. 2010;362(3):239–52.Google Scholar
  128. 128.
    Li D, Brooke B, Davis E, Mecham R, Sorensen L, Boak B, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393:276–80.PubMedGoogle Scholar
  129. 129.
    Ewart AK, Morris CA, Atkinson DL, Jin W, Sternes K, Spallone P, et al. Hemizygosity at the elastin locus in a developmental disorder. Williams syndrome. Nat Genet. 1993;5:11–6.PubMedGoogle Scholar
  130. 130.
    Lowery MC, Morris CA, Ewart A, Brothman LJ, Zhu XL, Leonard CO, et al. Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: evaluation of 235 patients. Am J Hum Genet. 1995;57(1):49–53.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Tassabehji M, Metcalfe K, Fergusson WD, Carette MJ, Dore JK, Donnai D, et al. LIM-kinase deleted in Williams syndrome. Nat Genet. 1996;13(3):272–3.PubMedGoogle Scholar
  132. 132.
    van Hagen JM, van der Geest JN, van der Giessen RS, Lagers-van Haselen GC, Eussen HJ, Gille JJ, et al. Contribution of CYLN2 and GTF2IRD1 to neurological and cognitive symptoms in Williams syndrome. Neurobiol Dis. 2007;26(1):112–24.PubMedGoogle Scholar
  133. 133.
    Del Campo M, Antonell A, Magano LF, Munoz FJ, Flores R, Bayes M, et al. Hemizygosity at the NCF1 gene in patients with Williams-Beuren syndrome decreases their risk of hypertension. Am J Hum Genet. 2006;78(4):533–42.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Edelmann L, Prosnitz A, Pardo S, Bhatt J, Cohen N, Lauriat T, et al. An atypical deletion of the Williams-Beuren syndrome interval implicates genes associated with defective visuospatial processing and autism. J Med Genet. 2007;44(2):136–43.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot MT, et al. Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet. 2006;79(2):332–41.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Cagle AP, Waguespack SG, Buckingham BA, Shankar RR, Dimeglio LA. Severe infantile hypercalcemia associated with Williams syndrome successfully treated with intravenously administered pamidronate. Pediatrics. 2004;114(4):1091–5.PubMedGoogle Scholar
  137. 137.
    Perez Jurado LA, Li X, Francke U. The human calcitonin receptor gene (CALCR) at 7q21.3 is outside the deletion associated with the Williams syndrome. Cytogenet Cell Genet. 1995;70(3–4):246–9.PubMedGoogle Scholar
  138. 138.
    Garabedian M, Jacqz E, Guillozo H, Grimberg R, Guillot M, Gagnadoux MF, et al. Elevated plasma 1,25-dihydroxyvitamin D concentrations in infants with hypercalcemia and an elfin facies. N Engl J Med. 1985;312(15):948–52.PubMedGoogle Scholar
  139. 139.
    Taylor AB, Stern PH, Bell NH. Abnormal regulation of circulating 25-hydroxyvitamin D in the Williams syndrome. N Engl J Med. 1982;306(16):972–5.PubMedGoogle Scholar
  140. 140.
    Lameris AL, Huybers S, Burke JR, Monnens LA, Bindels RJ, Hoenderop JG. Involvement of claudin 3 and claudin 4 in idiopathic infantile hypercalcaemia: a novel hypothesis? Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2010;25(11):3504–9.Google Scholar
  141. 141.
    Letavernier E, Rodenas A, Guerrot D, Haymann JP. Williams-Beuren syndrome hypercalcemia: is TRPC3 a novel mediator in calcium homeostasis? Pediatrics. 2012;129(6):e1626–30.PubMedGoogle Scholar
  142. 142.
    Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365:410–21.Google Scholar
  143. 143.
    Dauber A, Nguyen TT, Sochett E, Cole DE, Horst R, Abrams SA, et al. Genetic defect in CYP24A1, the vitamin D 24-hydroxylase gene, in a patient with severe infantile hypercalcemia. J Clin Endocrinol Metab. 2012;97(2):E268–74.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Fencl F, Blahova K, Schlingmann KP, Konrad M, Seeman T. Severe hypercalcemic crisis in an infant with idiopathic infantile hypercalcemia caused by mutation in CYP24A1 gene. Eur J Pediatr. 2013;172(1):45–9.PubMedGoogle Scholar
  145. 145.
    Tebben PJ, Milliner DS, Horst RL, Harris PC, Singh RJ, Wu Y, et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab. 2012;97(3):E423–7.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Castanet M, Mallet E, Kottler ML. Lightwood syndrome revisited with a novel mutation in CYP24 and vitamin D supplement recommendations. J Pediatr. 2013;163(4):1208–10.PubMedGoogle Scholar
  147. 147.
    Zwermann O, Piepkorn B, Engelbach M, Beyer J, Kann P. Abnormal pentagastrin response in a patient with pseudohypoparathyroidism. Exp Clin Endocrinol Diabetes. 2002;110(2):86–91.PubMedGoogle Scholar
  148. 148.
    Mitchell DM, Regan S, Cooley MR, Lauter KB, Vrla MC, Becker CB, et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab. 2012;97(12):4507–14.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Winer KK, Ko CW, Reynolds JC, Dowdy K, Keil M, Peterson D, et al. Long-term treatment of hypoparathyroidism: a randomized controlled study comparing parathyroid hormone-(1–34) versus calcitriol and calcium. J Clin Endocrinol Metab. 2003;88(9):4214–20.PubMedGoogle Scholar
  150. 150.
    Winer KK, Sinaii N, Peterson D, Sainz Jr B, Cutler Jr GB. Effects of once versus twice-daily parathyroid hormone 1–34 therapy in children with hypoparathyroidism. J Clin Endocrinol Metab. 2008;93(9):3389–95.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Winer KK, Sinaii N, Reynolds J, Peterson D, Dowdy K, Cutler Jr GB. Long-term treatment of 12 children with chronic hypoparathyroidism: a randomized trial comparing synthetic human parathyroid hormone 1–34 versus calcitriol and calcium. J Clin Endocrinol Metab. 2010;95(6):2680–8.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Winer KK, Yanovski JA, Cutler Jr GB. Synthetic human parathyroid hormone 1–34 vs calcitriol and calcium in the treatment of hypoparathyroidism. JAMA. 1996;276(8):631–6.PubMedGoogle Scholar
  153. 153.
    Winer KK, Yanovski JA, Sarani B, Cutler Jr GB. A randomized, cross-over trial of once-daily versus twice-daily parathyroid hormone 1–34 in treatment of hypoparathyroidism. J Clin Endocrinol Metab. 1998;83(10):3480–6.PubMedGoogle Scholar
  154. 154.
    Winer KK, Zhang B, Shrader JA, Peterson D, Smith M, Albert PS, et al. Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J Clin Endocrinol Metab. 2012;97(2):391–9.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Mannstadt M, Clarke BL, Vokes T, Brandi ML, Ranganath L, Fraser WD, et al. Efficacy and safety of recombinant human parathyroid hormone (1–84) in hypoparathyroidism (REPLACE): a double-blind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol. 2013;1(4):275–83.PubMedGoogle Scholar
  156. 156.
    Winer KK, Fulton KA, Albert PS, Cutler GB, Jr. Effects of pump versus twice-daily injection delivery of synthetic parathyroid hormone 1-34 in children with severe congenital hypoparathyroidism. J Pediatr. 2014;165:556–63.Google Scholar
  157. 157.
    Linglart A, Rothenbuhler A, Gueorgieva I, Lucchini P, Silve C, Bougneres P. Long-term results of continuous subcutaneous recombinant PTH (1–34) infusion in children with refractory hypoparathyroidism. J Clin Endocrinol Metab. 2011;96(11):3308–12.PubMedGoogle Scholar
  158. 158.
    Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 1990;86:1084–7.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Karaplis AC, Lim SK, Baba H, Arnold A, Kronenberg HM. Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. J Biol Chem. 1995;270:1629–35.PubMedGoogle Scholar
  160. 160.
    Datta R, Waheed A, Shah GN, Sly WS. Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc Natl Acad Sci U S A. 2007;104(50):19989–94.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S. A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab. 1999;84(10):3792–6.PubMedGoogle Scholar
  162. 162.
    Parkinson D, Thakker R. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet. 1992;1:149–53.PubMedGoogle Scholar
  163. 163.
    Ertl DA, Stary S, Streubel B, Raimann A, Haeusler G. A novel homozygous mutation in the parathyroid hormone gene (PTH) in a girl with isolated hypoparathyroidism. Bone. 2012;51(3):629–32.PubMedGoogle Scholar
  164. 164.
    Tomar N, Gupta N, Goswami R. Calcium-sensing receptor autoantibodies and idiopathic hypoparathyroidism. J Clin Endocrinol Metab. 2013;98(9):3884–91.PubMedGoogle Scholar
  165. 165.
    Kawahara M, Iwasaki Y, Sakaguchi K, Taguchi T, Nishiyama M, Nigawara T, et al. Involvement of GCMB in the transcriptional regulation of the human parathyroid hormone gene in a parathyroid-derived cell line PT-r: effects of calcium and 1,25(OH)2D3. Bone. 2010;47(3):534–41.PubMedGoogle Scholar
  166. 166.
    Günther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 2000;406(6792):199–203.PubMedGoogle Scholar
  167. 167.
    Liu Z, Yu S, Manley NR. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol. 2007;305(1):333–46.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Ding C, Buckingham B, Levine MA. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest. 2001;108(8):1215–20.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Thomee C, Schubert SW, Parma J, Le PQ, Hashemolhosseini S, Wegner M, et al. GCMB mutation in familial isolated hypoparathyroidism with residual secretion of parathyroid hormone. J Clin Endocrinol Metab. 2005;90(5):2487–92.PubMedGoogle Scholar
  170. 170.
    Baumber L, Tufarelli C, Patel S, King P, Johnson CA, Maher ER, et al. Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet. 2005;42(5):443–8.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Maret A, Ding C, Kornfield SL, Levine MA. Analysis of the GCM2 gene in isolated hypoparathyroidism: a molecular and biochemical study. J Clin Endocrinol Metab. 2008;93(4):1426–32.PubMedGoogle Scholar
  172. 172.
    Bowl MR, Mirczuk SM, Grigorieva IV, Piret SE, Cranston T, Southam L, et al. Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism. Hum Mol Genet. 2010;19(10):2028–38.PubMedGoogle Scholar
  173. 173.
    Mirczuk SM, Bowl MR, Nesbit MA, Cranston T, Fratter C, Allgrove J, et al. A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab. 2010;95(7):3512–6.PubMedGoogle Scholar
  174. 174.
    Tomar N, Bora H, Singh R, Gupta N, Kaur P, Chauhan SS, et al. Presence and significance of a R110W mutation in the DNA-binding domain of GCM2 gene in patients with isolated hypoparathyroidism and their family members. Eur J Endocrinol. 2010;162(2):407–21.PubMedGoogle Scholar
  175. 175.
    Mannstadt M, Bertrand G, Muresan M, Weryha G, Leheup B, Pulusani SR, et al. Dominant-negative GCMB mutations cause an autosomal dominant form of hypoparathyroidism. J Clin Endocrinol Metab. 2008;93(9):3568–76.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Canaff L, Zhou X, Mosesova I, Cole DE, Hendy GN. Glial Cells Missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat. 2009;30(1):85–92.PubMedGoogle Scholar
  177. 177.
    Peden VH. True idiopathic hypoparathyroidism as a sex-linked recessive trait. Am J Hum Genet. 1960;12:323–37.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Mumm S, Whyte MP, Thakker RV, Buetow KH, Schlessinger D. mtDNA analysis shows common ancestry in two kindreds with X-linked recessive hypoparathyroidism and reveals a heteroplasmic silent mutation. Am J Hum Genet. 1997;60(1):153–9.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Whyte M, Kim G, Kosanovich M. Absence of parathyroid tissue in sex-linked recessive hypoparathyroidism. J Paediatr. 1986;109:915.Google Scholar
  180. 180.
    Thakker RV, Davies KE, Whyte MP, Wooding C, O’Riordan JL. Mapping the gene causing X-linked recessive idiopathic hypoparathyroidism to Xq26-Xq27 by linkage studies. J Clin Invest. 1990;86(1):40–5.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Bowl M, Nesbit M, Harding B, Levy E, Jefferson A, Volpi E, et al. An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest. 2005;115:2822–31.PubMedCentralPubMedGoogle Scholar
  182. 182.
    Ahonen P. Autoimmune polyendocrinopathy–candidosis–ectodermal dystrophy (APECED): autosomal recessive inheritance. Clin Genet. 1985;27(6):535–42.PubMedGoogle Scholar
  183. 183.
    Goswami R, Singh A, Gupta N, Rani R. Presence of strong association of the major histocompatibility complex (MHC) class I allele HLA-A*26:01 with idiopathic hypoparathyroidism. J Clin Endocrinol Metab. 2012;97(9):E1820–4.PubMedGoogle Scholar
  184. 184.
    Aaltonen J, Bjorses P, Sandkuijl L, Perheentupa J, Peltonen L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nat Genet. 1994;8(1):83–7.PubMedGoogle Scholar
  185. 185.
    Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17(4):393–8.PubMedGoogle Scholar
  186. 186.
    Scott HS, Heino M, Peterson P, Mittaz L, Lalioti MD, Betterle C, et al. Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. Mol Endocrinol. 1998;12(8):1112–9.PubMedGoogle Scholar
  187. 187.
    Cihakova D, Trebusak K, Heino M, Fadeyev V, Tiulpakov A, Battelino T, et al. Novel AIRE mutations and P450 cytochrome autoantibodies in Central and Eastern European patients with APECED. Hum Mutat. 2001;18(3):225–32.PubMedGoogle Scholar
  188. 188.
    Wang CY, Davoodi-Semiromi A, Huang W, Connor E, Shi JD, She JX. Characterization of mutations in patients with autoimmune polyglandular syndrome type 1 (APS1). Hum Genet. 1998;103(6):681–5.PubMedGoogle Scholar
  189. 189.
    Heino M, Scott HS, Chen Q, Peterson P, Maebpaa U, Papasavvas MP, et al. Mutation analyses of North American APS-1 patients. Hum Mutat. 1999;13(1):69–74.PubMedGoogle Scholar
  190. 190.
    Pearce SH, Cheetham T, Imrie H, Vaidya B, Barnes ND, Bilous RW, et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am J Hum Genet. 1998;63(6):1675–84.PubMedCentralPubMedGoogle Scholar
  191. 191.
    Bjorses P, Halonen M, Palvimo JJ, Kolmer M, Aaltonen J, Ellonen P, et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am J Hum Genet. 2000;66(2):378–92.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Rosatelli MC, Meloni A, Devoto M, Cao A, Scott HS, Peterson P, et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum Genet. 1998;103(4):428–34.PubMedGoogle Scholar
  193. 193.
    Matsuo T, Noguchi Y, Shindo M, Morita Y, Oda Y, Yoshida E, et al. Regulation of human autoimmune regulator (AIRE) gene translation by miR-220b. Gene. 2013;530(1):19–25.PubMedGoogle Scholar
  194. 194.
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol. 2003;4(4):350–4.PubMedGoogle Scholar
  195. 195.
    Meloni A, Incani F, Corda D, Cao A, Rosatelli MC. Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. Mol Immunol. 2008;45(3):805–9.PubMedGoogle Scholar
  196. 196.
    Su MA, Giang K, Zumer K, Jiang H, Oven I, Rinn JL, et al. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest. 2008;118(5):1712–26.PubMedCentralPubMedGoogle Scholar
  197. 197.
    Laakso SM, Kekalainen E, Heikkila N, Mannerstrom H, Kisand K, Peterson P, et al. In vivo analysis of helper T cell responses in patients with autoimmune polyendocrinopathy – candidiasis – ectodermal dystrophy provides evidence in support of an IL-22 defect. Autoimmunity. 2014;47:556–62.Google Scholar
  198. 198.
    Gavalas NG, Kemp EH, Krohn KJ, Brown EM, Watson PF, Weetman AP. The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 2007;92(6):2107–14.PubMedGoogle Scholar
  199. 199.
    Alimohammadi M, Bjorklund P, Hallgren A, Pontynen N, Szinnai G, Shikama N, et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med. 2008;358(10):1018–28.PubMedGoogle Scholar
  200. 200.
    Kemp EH, Habibullah M, Kluger N, Ranki A, Sandhu HK, Krohn KJ, et al. Prevalence and clinical associations of calcium-sensing receptor and NALP5 autoantibodies in Finnish APECED patients. J Clin Endocrinol Metab. 2014;99(3):1064–71.PubMedGoogle Scholar
  201. 201.
    Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A, Perniola R, et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008;93(11):4389–97.PubMedGoogle Scholar
  202. 202.
    Meager A, Visvalingam K, Peterson P, Moll K, Murumagi A, Krohn K, et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006;3(7):e289.PubMedCentralPubMedGoogle Scholar
  203. 203.
    Wolff AS, Sarkadi AK, Marodi L, Karner J, Orlova E, Oftedal BE, et al. Anti-cytokine autoantibodies preceding onset of autoimmune polyendocrine syndrome type I features in early childhood. J Clin Immunol. 2013;33(8):1341–8.PubMedGoogle Scholar
  204. 204.
    Lammer EJ, Opitz JM. The DiGeorge anomaly as a developmental field defect. Am J Med Genet Suppl. 1986;2:113–27.PubMedGoogle Scholar
  205. 205.
    Gong W, Emanuel BS, Collins J, Kim DH, Wang Z, Chen F, et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum Mol Genet. 1996;5(6):789–800.PubMedGoogle Scholar
  206. 206.
    Scambler PJ. The 22q11 deletion syndromes. Hum Mol Genet. 2000;9(16):2421–6.PubMedGoogle Scholar
  207. 207.
    Scambler PJ, Carey AH, Wyse RK, Roach S, Dumanski JP, Nordenskjold M, et al. Microdeletions within 22q11 associated with sporadic and familial DiGeorge syndrome. Genomics. 1991;10(1):201–6.PubMedGoogle Scholar
  208. 208.
    Monaco G, Pignata C, Rossi E, Mascellaro O, Cocozza S, Ciccimarra F. DiGeorge anomaly associated with 10p deletion. Am J Med Genet. 1991;39(2):215–6.PubMedGoogle Scholar
  209. 209.
    Stoller JZ, Epstein JA. Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Hum Mol Genet. 2005;14(7):885–92.PubMedGoogle Scholar
  210. 210.
    Conley ME, Beckwith JB, Mancer JF, Tenckhoff L. The spectrum of the DiGeorge syndrome. J Pediatr. 1979;94(6):883–90.PubMedGoogle Scholar
  211. 211.
    Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997;34(10):798–804.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Cuneo BF, Langman CB, Ilbawi MN, Ramakrishnan V, Cutilletta A, Driscoll DA. Latent hypoparathyroidism in children with conotruncal cardiac defects. Circulation. 1996;93(9):1702–8.PubMedGoogle Scholar
  213. 213.
    Taylor SC, Morris G, Wilson D, Davies SJ, Gregory JW. Hypoparathyroidism and 22q11 deletion syndrome. Arch Dis Child. 2003;88(6):520–2.PubMedCentralPubMedGoogle Scholar
  214. 214.
    Gidding SS, Minciotti AL, Langman CB. Unmasking of hypoparathyroidism in familial partial DiGeorge syndrome by challenge with disodium edetate. N Engl J Med. 1988;319(24):1589–91.PubMedGoogle Scholar
  215. 215.
    Augusseau S, Jouk S, Jalbert P, Prieur M. DiGeorge syndrome and 22q11 rearrangements. Hum Genet. 1986;74(2):206.PubMedGoogle Scholar
  216. 216.
    Budarf ML, Collins J, Gong W, Roe B, Wang Z, Bailey LC, et al. Cloning a balanced translocation associated with DiGeorge syndrome and identification of a disrupted candidate gene. Nat Genet. 1995;10(3):269–78.PubMedGoogle Scholar
  217. 217.
    Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science. 1999;283(5405):1158–61.PubMedGoogle Scholar
  218. 218.
    Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature. 1999;401(6751):379–83.PubMedGoogle Scholar
  219. 219.
    Magnaghi P, Roberts C, Lorain S, Lipinski M, Scambler PJ. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3. Nat Genet. 1998;20(1):74–7.PubMedGoogle Scholar
  220. 220.
    Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286–91.PubMedGoogle Scholar
  221. 221.
    Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362(9393):1366–73.PubMedGoogle Scholar
  222. 222.
    Baldini A. DiGeorge’s syndrome: a gene at last. Lancet. 2003;362(9393):1342–3.PubMedGoogle Scholar
  223. 223.
    Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS, Epstein JA, et al. Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet. 2004;13(15):1577–85.PubMedGoogle Scholar
  224. 224.
    Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet. 2001;27(3):293–8.PubMedGoogle Scholar
  225. 225.
    Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci U S A. 2006;103(20):7729–34.PubMedCentralPubMedGoogle Scholar
  226. 226.
    Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet. 1999;21(4):434–9.PubMedGoogle Scholar
  227. 227.
    Maynard TM, Meechan DW, Dudevoir ML, Gopalakrishna D, Peters AZ, Heindel CC, et al. Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Mol Cell Neurosci. 2008;39(3):439–51.PubMedCentralPubMedGoogle Scholar
  228. 228.
    Bilous R, Murty G, Parkinson D, Thakker R, Coulthard M, Burn J, et al. Autosomal dominant familial hypoparathyroidism, sensineural deafness and renal dysplasia. N Engl J Med. 1992;327:1069–84.PubMedGoogle Scholar
  229. 229.
    Lichtner P, Konig R, Hasegawa T, Van Esch H, Meitinger T, Schuffenhauer S. An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14. J Med Genet. 2000;37(1):33–7.PubMedCentralPubMedGoogle Scholar
  230. 230.
    Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature. 2000;406(6794):419–22.PubMedGoogle Scholar
  231. 231.
    Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, et al. GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet. 2001;38(6):374–80.PubMedCentralPubMedGoogle Scholar
  232. 232.
    Nesbit MA, Bowl MR, Harding B, Ali A, Ayala A, Crowe C, et al. Characterization of GATA3 mutations in the hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. J Biol Chem. 2004;279(21):22624–34.PubMedGoogle Scholar
  233. 233.
    Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997;90(1):109–19.PubMedGoogle Scholar
  234. 234.
    Dai YS, Markham BE. p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem. 2001;276(40):37178–85.PubMedGoogle Scholar
  235. 235.
    Ali A, Christie PT, Grigorieva IV, Harding B, Van Esch H, Ahmed SF, et al. Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet. 2007;16(3):265–75.PubMedGoogle Scholar
  236. 236.
    Saito T, Fukumoto S, Ito N, Suzuki H, Igarashi T, Fujita T. A novel mutation in the GATA3 gene of a Japanese patient with PTH-deficient hypoparathyroidism. J Bone Miner Metab. 2009;27(3):386–9.PubMedGoogle Scholar
  237. 237.
    Fukai R, Ochi N, Murakami A, Nakashima M, Tsurusaki Y, Saitsu H, et al. Co-occurrence of 22q11 deletion syndrome and HDR syndrome. Am J Med Genet A. 2013;161(10):2576–81.Google Scholar
  238. 238.
    Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet. 1995;11(1):40–4.PubMedGoogle Scholar
  239. 239.
    van der Wees J, van Looij MA, de Ruiter MM, Elias H, van der Burg H, Liem SS, et al. Hearing loss following Gata3 haploinsufficiency is caused by cochlear disorder. Neurobiol Dis. 2004;16(1):169–78.PubMedGoogle Scholar
  240. 240.
    van Looij MA, van der Burg H, van der Giessen RS, de Ruiter MM, van der Wees J, van Doorninck JH, et al. GATA3 haploinsufficiency causes a rapid deterioration of distortion product otoacoustic emissions (DPOAEs) in mice. Neurobiol Dis. 2005;20(3):890–7.PubMedGoogle Scholar
  241. 241.
    Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF, Wei Q, et al. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest. 2010;120(6):2144–55.PubMedCentralPubMedGoogle Scholar
  242. 242.
    Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med. 1989;320(20):1293–9.PubMedGoogle Scholar
  243. 243.
    Zupanc ML, Moraes CT, Shanske S, Langman CB, Ciafaloni E, DiMauro S. Deletion of mitochondrial DNA in patients with combined features of Kearns-Sayre and MELAS syndromes. Ann Neurol. 1991;29(6):680–3.PubMedGoogle Scholar
  244. 244.
    Isotani H, Fukumoto Y, Kawamura H, Furukawa K, Ohsawa N, Goto Y, et al. Hypoparathyroidism and insulin-dependent diabetes mellitus in a patient with Kearns-Sayre syndrome harbouring a mitochondrial DNA deletion. Clin Endocrinol (Oxf). 1996;45(5):637–41.Google Scholar
  245. 245.
    Dionisi-Vici C, Garavaglia B, Burlina AB, Bertini E, Saponara I, Sabetta G, et al. Hypoparathyroidism in mitochondrial trifunctional protein deficiency. J Pediatr. 1996;129(1):159–62.PubMedGoogle Scholar
  246. 246.
    Labarthe F, Benoist JF, Brivet M, Vianey-Saban C, Despert F, de Baulny HO. Partial hypoparathyroidism associated with mitochondrial trifunctional protein deficiency. Eur J Pediatr. 2006;165(6):389–91.PubMedGoogle Scholar
  247. 247.
    Franceschini P, Testa A, Bogetti G, Girardo E, Guala A, Lopez-Bell G, et al. Kenny-Caffey syndrome in two sibs born to consanguineous parents: evidence for an autosomal recessive variant. Am J Med Genet. 1992;42(1):112–6.PubMedGoogle Scholar
  248. 248.
    Boynton JR, Pheasant TR, Johnson BL, Levin DB, Streeten BW. Ocular findings in Kenny’s syndrome. Arch Ophthalmol. 1979;97(5):896–900.PubMedGoogle Scholar
  249. 249.
    Tahseen K, Khan S, Uma R, Usha R, Al Ghanem MM, Al Awadi SA, et al. Kenny-Caffey syndrome in six Bedouin sibships: autosomal recessive inheritance is confirmed. Am J Med Genet. 1997;69(2):126–32.PubMedGoogle Scholar
  250. 250.
    Diaz GA, Khan KT, Gelb BD. The autosomal recessive Kenny-Caffey syndrome locus maps to chromosome 1q42-q43. Genomics. 1998;54(1):13–8.PubMedGoogle Scholar
  251. 251.
    Guo MH, Shen Y, Walvoord EC, Miller TC, Moon JE, Hirschhorn JN, et al. Whole exome sequencing to identify genetic causes of short stature. Horm Res Paediatr. 2014;82(1):44–52.PubMedCentralPubMedGoogle Scholar
  252. 252.
    Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S, et al. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet. 2013;92(6):990–5.PubMedCentralPubMedGoogle Scholar
  253. 253.
    Fine DA, Rozenblatt-Rosen O, Padi M, Korkhin A, James RL, Adelmant G, et al. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog. 2012;8(10):e1002949.PubMedCentralPubMedGoogle Scholar
  254. 254.
    Nikkel S, Ahmed A, Smith A, Marcadier J, Bulman D, Boycott K. Mother-to-daughter transmission of Kenny-Caffey syndrome associated with the recurrent, dominant FAM111A mutation p.Arg569His. Clin Genet. 2014;86:394–95.Google Scholar
  255. 255.
    Sanjad SA, Sakati NA, Abu-Osba YK, Kaddoura R, Milner RD. A new syndrome of congenital hypoparathyroidism, severe growth failure, and dysmorphic features. Arch Dis Child. 1991;66(2):193–6.PubMedCentralPubMedGoogle Scholar
  256. 256.
    Parvari R, Hershkovitz E, Kanis A, Gorodischer R, Shalitin S, Sheffield VC, et al. Homozygosity and linkage-disequilibrium mapping of the syndrome of congenital hypoparathyroidism, growth and mental retardation, and dysmorphism to a 1-cM interval on chromosome 1q42-43. Am J Hum Genet. 1998;63(1):163–9.PubMedCentralPubMedGoogle Scholar
  257. 257.
    Diaz GA, Gelb BD, Ali F, Sakati N, Sanjad S, Meyer BF, et al. Sanjad-Sakati and autosomal recessive Kenny-Caffey syndromes are allelic: evidence for an ancestral founder mutation and locus refinement. Am J Med Genet. 1999;85(1):48–52.PubMedGoogle Scholar
  258. 258.
    Parvari R, Hershkovitz E, Grossman N, Gorodischer R, Loeys B, Zecic A, et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet. 2002;32(3):448–52.PubMedGoogle Scholar
  259. 259.
    Tian G, Huang MC, Parvari R, Diaz GA, Cowan NJ. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD. Proc Natl Acad Sci U S A. 2006;103(36):13491–6.PubMedCentralPubMedGoogle Scholar
  260. 260.
    Hershkovitz E, Rozin I, Limony Y, Golan H, Hadad N, Gorodischer R, et al. Hypoparathyroidism, retardation, and dysmorphism syndrome: impaired early growth and increased susceptibility to severe infections due to hyposplenism and impaired polymorphonuclear cell functions. Pediatr Res. 2007;62(4):505–9.PubMedGoogle Scholar
  261. 261.
    Weber T, Liu S, Indridason O, Quarles L. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003;18:1227–34.PubMedGoogle Scholar
  262. 262.
    Parkinson DB, Shaw NJ, Himsworth RL, Thakker RV. Parathyroid hormone gene analysis in autosomal hypoparathyroidism using an intragenic tetranucleotide (AAAT)n polymorphism. Hum Genet. 1993;91(3):281–4.PubMedGoogle Scholar
  263. 263.
    Barakat AY, D’Albora JB, Martin MM, Jose PA. Familial nephrosis, nerve deafness, and hypoparathyroidism. J Pediatr. 1977;91(1):61–4.PubMedGoogle Scholar
  264. 264.
    Dahlberg PJ, Borer WZ, Newcomer KL, Yutuc WR. Autosomal or X-linked recessive syndrome of congenital lymphedema, hypoparathyroidism, nephropathy, prolapsing mitral valve, and brachytelephalangy. Am J Med Genet. 1983;16(1):99–104.PubMedGoogle Scholar
  265. 265.
    Lienhardt A, Bai M, Lagarde JP, Rigaud M, Zhang Z, Jiang Y, et al. Activating mutations of the calcium-sensing receptor: management of hypocalcemia. J Clin Endocrinol Metab. 2001;86(11):5313–23.PubMedGoogle Scholar
  266. 266.
    Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, et al. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet. 1994;8:303–7.PubMedGoogle Scholar
  267. 267.
    Finegold DN, Armitage MM, Galiani M, Matise TC, Pandian MR, Perry YM, et al. Preliminary localization of a gene for autosomal dominant hypoparathyroidism to chromosome 3q13. Pediatr Res. 1994;36(3):414–7.PubMedGoogle Scholar
  268. 268.
    Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22.PubMedGoogle Scholar
  269. 269.
    Baron J, Winer K, Yanovski J, Cunningham A, Laue L, Zimmerman D, et al. Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet. 1996;5:601–6.PubMedGoogle Scholar
  270. 270.
    Okazaki R, Chikatsu N, Nakatsu M, Takeuchi Y, Ajima M, Miki J, et al. A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 1999;84:363–6.PubMedGoogle Scholar
  271. 271.
    Hu J, McLarnon SJ, Mora S, Jiang J, Thomas C, Jacobson KA, et al. A region in the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+. J Biol Chem. 2005;280(6):5113–20.PubMedGoogle Scholar
  272. 272.
    Lienhardt A, Garabedian M, Bai M, Sinding C, Zhang Z, Lagarde JP, et al. A large homozygous or heterozygous in-frame deletion within the calcium-sensing receptor’s carboxylterminal cytoplasmic tail that causes autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 2000;85(4):1695–702.PubMedGoogle Scholar
  273. 273.
    Hannan FM, Nesbit MA, Zhang C, Cranston T, Curley AJ, Harding B, et al. Identification of 70 calcium-sensing receptor mutations in hyper- and hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at calcium-binding sites. Hum Mol Genet. 2012;21(12):2768–78.PubMedGoogle Scholar
  274. 274.
    Li D, Opas EE, Tuluc F, Metzger DL, Hou C, Hakonarson H, et al. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization. J Clin Endocrinol Metab. 2014;99:E1774–83.Google Scholar
  275. 275.
    Rogers A, Nesbit MA, Hannan FM, Howles SA, Gorvin CM, Cranston T, et al. Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene: search for autosomal dominant hypocalcemia type 3 (ADH3). J Clin Endocrinol Metab. 2014;99(7):E1300–5.PubMedCentralPubMedGoogle Scholar
  276. 276.
    Thakker RV. Molecular pathology of renal chloride channels in Dent’s disease and Bartter’s syndrome. Exp Nephrol. 2000;8(6):351–60.PubMedGoogle Scholar
  277. 277.
    Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003;12(5):527–32.PubMedGoogle Scholar
  278. 278.
    Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002;360(9334):692–4.PubMedGoogle Scholar
  279. 279.
    Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13(9):2259–66.PubMedGoogle Scholar
  280. 280.
    Vezzoli G, Arcidiacono T, Paloschi V, Terranegra A, Biasion R, Weber G, et al. Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J Nephrol. 2006;19(4):525–8.PubMedGoogle Scholar
  281. 281.
    Hu J, Mora S, Weber G, Zamproni I, Proverbio MC, Spiegel AM. Autosomal dominant hypocalcemia in monozygotic twins caused by a de novo germline mutation near the amino-terminus of the human calcium receptor. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19(4):578–86.Google Scholar
  282. 282.
    Bettinelli A, Vezzoli G, Colussi G, Bianchetti MG, Sereni F, Casari G. Genotype-phenotype correlations in normotensive patients with primary renal tubular hypokalemic metabolic alkalosis. J Nephrol. 1998;11(2):61–9.PubMedGoogle Scholar
  283. 283.
    Ranieri M, Tamma G, Di Mise A, Vezzoli G, Soldati L, Svelto M, et al. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR) are associated with increased ER to cytosol calcium gradient. PLoS One. 2013;8(11):e79113.PubMedCentralPubMedGoogle Scholar
  284. 284.
    Li Y, Song YH, Rais N, Connor E, Schatz D, Muir A, et al. Autoantibodies to the extracellular domain of the calcium sensing receptor in patients with acquired hypoparathyroidism. J Clin Invest. 1996;97(4):910–4.PubMedCentralPubMedGoogle Scholar
  285. 285.
    Albright F, Burnett CH, Smith PH, Parson W. Pseudohypoparathyroidism – an example of “Seabright-Bantam syndrome”. Endocrinology. 1942;30:922–32.Google Scholar
  286. 286.
    Weinstein LS. Albright hereditary osteodystrophy, pseudohypoparathyroidism, and Gs deficiency. In: Spiegel AM, editor. G proteins, receptors, and disease. Totowa: Humana Press; 1998. p. 23–56.Google Scholar
  287. 287.
    de Jan Beur S, Levine M. Pseudohypoparathyroidism: clinical, biochemical, and molecular features. In: Bilezikian JP, Markus R, Levine MA, editors. The parathyroids: basic and clinical concepts. New York: Academic; 2001. p. 807–25.Google Scholar
  288. 288.
    Bastepe M, Jüppner H. Pseudohypoparathyroidism, Albright’s hereditary osteodystrophy, and progressive osseous heteroplasia: disorders caused by inactivating GNAS mutations. In: DeGroot LJ, Jameson JL, editors. Endocrinology, 1. 6th ed. Philadelphia: W.B. Saunders; 2010. p. 1223–35.Google Scholar
  289. 289.
    Bastepe M, Jüppner H. Pseudohypoparathyroidism, Gsα, and the GNAS locus. BoneKEy. 2005;2:20–32.Google Scholar
  290. 290.
    Levine MA. Pseudohypoparathyroidism. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. New York: Academic; 1996. p. 853–76.Google Scholar
  291. 291.
    Schuster V, Eschenhagen T, Kruse K, Gierschik P, Kreth HW. Endocrine and molecular biological studies in a German family with Albright hereditary osteodystrophy. Eur J Pediatr. 1993;152:185–9.PubMedGoogle Scholar
  292. 292.
    Miric A, Vechio JD, Levine MA. Heterogeneous mutations in the gene encoding the α-subunit of the stimulatory G protein of adenylyl cyclase in Albright hereditary osteodystrophy. J Clin Endocrinol Metab. 1993;76:1560–8.PubMedGoogle Scholar
  293. 293.
    Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES, et al. Mutations of the Gs α−subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. Proc Natl Acad Sci U S A. 1990;87:8287–90.PubMedCentralPubMedGoogle Scholar
  294. 294.
    Ahrens W, Hiort O, Staedt P, Kirschner T, Marschke C, Kruse K. Analysis of the GNAS1 gene in Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab. 2001;86(10):4630–4.PubMedGoogle Scholar
  295. 295.
    Linglart A, Carel JC, Garabedian M, Le T, Mallet E, Kottler ML. GNAS1 lesions in pseudohypoparathyroidism Ia and Ic: genotype phenotype relationship and evidence of the maternal transmission of the hormonal resistance. J Clin Endocrinol Metab. 2002;87(1):189–97.PubMedGoogle Scholar
  296. 296.
    Long DN, McGuire S, Levine MA, Weinstein LS, Germain-Lee EL. Body mass index differences in pseudohypoparathyroidism type 1a versus pseudopseudohypoparathyroidism may implicate paternal imprinting of Galpha(s) in the development of human obesity. J Clin Endocrinol Metab. 2007;92(3):1073–9.PubMedGoogle Scholar
  297. 297.
    Davies AJ, Hughes HE. Imprinting in Albright’s hereditary osteodystrophy. J Med Genet. 1993;30:101–3.PubMedCentralPubMedGoogle Scholar
  298. 298.
    Wilson LC, Oude-Luttikhuis MEM, Clayton PT, Fraser WD, Trembath RC. Parental origin of Gsα gene mutations in Albright’s hereditary osteodystrophy. J Med Genet. 1994;31:835–9.PubMedCentralPubMedGoogle Scholar
  299. 299.
    Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, et al. A mouse model of Albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology. 2005;146(11):4697–709.PubMedGoogle Scholar
  300. 300.
    Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. Proc Natl Acad Sci U S A. 1998;95(15):8715–20.PubMedCentralPubMedGoogle Scholar
  301. 301.
    Yu S, Gavrilova O, Chen H, Lee R, Liu J, Pacak K, et al. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J Clin Invest. 2000;105:615–23.PubMedCentralPubMedGoogle Scholar
  302. 302.
    Eddy MC, De Jan Beur SM, Yandow SM, McAlister WH, Shore EM, Kaplan FS, et al. Deficiency of the alpha-subunit of the stimulatory G protein and severe extraskeletal ossification. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000;15(11):2074–83.Google Scholar
  303. 303.
    Yeh GL, Mathur S, Wivel A, Li M, Gannon FH, Ulied A, et al. GNAS1 mutation and Cbfa1 misexpression in a child with severe congenital platelike osteoma cutis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000;15(11):2063–73.Google Scholar
  304. 304.
    Shore E, Ahn J, de Jan Beur S, Li M, Xu M, Gardner RM, et al. Paternally-inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Engl J Med. 2002;346:99–106.PubMedGoogle Scholar
  305. 305.
    Adegbite NS, Xu M, Kaplan FS, Shore EM, Pignolo RJ. Diagnostic and mutational spectrum of progressive osseous heteroplasia (POH) and other forms of GNAS-based heterotopic ossification. Am J Med Genet A. 2008;146A(14):1788–96.PubMedCentralPubMedGoogle Scholar
  306. 306.
    Cairns DM, Pignolo RJ, Uchimura T, Brennan TA, Lindborg CM, Xu M, et al. Somitic disruption of GNAS in chick embryos mimics progressive osseous heteroplasia. J Clin Invest. 2013;123(8):3624–33.PubMedCentralPubMedGoogle Scholar
  307. 307.
    Schipani E, Weinstein LS, Bergwitz C, Iida-Klein A, Kong XF, Stuhrmann M, et al. Pseudohypoparathyroidism type Ib is not caused by mutations in the coding exons of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene. J Clin Endocrinol Metab. 1995;80:1611–21.PubMedGoogle Scholar
  308. 308.
    Bettoun JD, Minagawa M, Kwan MY, Lee HS, Yasuda T, Hendy GN, et al. Cloning and characterization of the promoter regions of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene: analysis of deoxyribonucleic acid from normal subjects and patients with pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab. 1997;82:1031–40.PubMedGoogle Scholar
  309. 309.
    Suarez F, Lebrun JJ, Lecossier D, Escoubet B, Coureau C, Silve C. Expression and modulation of the parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acid in skin fibroblasts from patients with type Ib pseudohypoparathyroidism. J Clin Endocrinol Metab. 1995;80:965–70.PubMedGoogle Scholar
  310. 310.
    Fukumoto S, Suzawa M, Takeuchi Y, Nakayama K, Kodama Y, Ogata E, et al. Absence of mutations in parathyroid hormone (PTH)/PTH-related protein receptor complementary deoxyribonucleic acid in patients with pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab. 1996;81:2554–8.PubMedGoogle Scholar
  311. 311.
    Bastepe M, Lane AH, Jüppner H. Paternal uniparental isodisomy of chromosome 20q (patUPD20q) – and the resulting changes in GNAS1 methylation – as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet. 2001;68:1283–9.PubMedCentralPubMedGoogle Scholar
  312. 312.
    Bastepe M, Jüppner H. Pseudohypoparathyroidism: new insights into an old disease. In: Strewler GJ, editor. Endocrinology and Metabolism Clinics of North America: Hormones and disorders of mineral metabolism, vol. 29. Philadelphia: W. B. Saunders; 2000. p. 569–89.Google Scholar
  313. 313.
    de Pérez Nanclares G, Fernández-Rebollo E, Santin I, Garcia-Cuartero B, Gaztambide S, Menendez E, et al. Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab. 2007;92(6):2370–3.Google Scholar
  314. 314.
    Unluturk U, Harmanci A, Babaoglu M, Yasar U, Varli K, Bastepe M, et al. Molecular diagnosis and clinical characterization of pseudohypoparathyroidism type-Ib in a patient with mild Albright’s hereditary osteodystrophy-like features, epileptic seizures, and defective renal handling of uric acid. Am J Med Sci. 2008;336(1):84–90.PubMedGoogle Scholar
  315. 315.
    Jüppner H, Schipani E, Bastepe M, Cole DEC, Lawson ML, Mannstadt M, et al. The gene responsible for pseudohypoparathyroidism type Ib is paternally imprinted and maps in four unrelated kindreds to chromosome 20q13.3. Proc Natl Acad Sci U S A. 1998;95:11798–803.PubMedCentralPubMedGoogle Scholar
  316. 316.
    Liu J, Litman D, Rosenberg M, Yu S, Biesecker L, Weinstein L. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest. 2000;106:1167–74.PubMedCentralPubMedGoogle Scholar
  317. 317.
    Bastepe M, Pincus JE, Sugimoto T, Tojo K, Kanatani M, Azuma Y, et al. Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus. Hum Mol Genet. 2001;10:1231–41.PubMedGoogle Scholar
  318. 318.
    Bastepe M, Fröhlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, et al. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest. 2003;112(8):1255–63.PubMedCentralPubMedGoogle Scholar
  319. 319.
    Laspa E, Bastepe M, Jüppner H, Tsatsoulis A. Phenotypic and molecular genetic aspects of pseudohypoparathyroidism type Ib in a Greek kindred: evidence for enhanced uric acid excretion due to parathyroid hormone resistance. J Clin Endocrinol Metab. 2004;89:5942–7.PubMedGoogle Scholar
  320. 320.
    Mahmud FH, Linglart A, Bastepe M, Jüppner H, Lteif AN. Molecular diagnosis of pseudohypoparathyroidism type Ib in a family with presumed paroxysmal dyskinesia. Pediatrics. 2005;115(2):e242–4.PubMedGoogle Scholar
  321. 321.
    Liu J, Nealon J, Weinstein L. Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum Mol Genet. 2005;14:95–102.PubMedGoogle Scholar
  322. 322.
    Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet. 2005;76:804–14.PubMedCentralPubMedGoogle Scholar
  323. 323.
    Elli FM, de Sanctis L, Peverelli E, Bordogna P, Pivetta B, Miolo G, et al. Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the A/B DMR. J Clin Endocrinol Metab. 2014;99:E724–28.Google Scholar
  324. 324.
    Richard N, Abeguile G, Coudray N, Mittre H, Gruchy N, Andrieux J, et al. A new deletion ablating NESP55 causes loss of maternal imprint of A/B GNAS and autosomal dominant pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab. 2012;97(5):E863–7.PubMedGoogle Scholar
  325. 325.
    Bastepe M, Jüppner H. The GNAS locus and pseudohypoparathyroidism. Horm Res. 2005;63:65–74.PubMedGoogle Scholar
  326. 326.
    Chillambhi S, Turan S, Hwang DY, Chen HC, Jüppner H, Bastepe M. Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab. 2010;95:3993–4002.PubMedCentralPubMedGoogle Scholar
  327. 327.
    Linglart A, Bastepe M, Jüppner H. Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus. Clin Endocrinol (Oxf). 2007;67(6):822–31.Google Scholar
  328. 328.
    Dixit A, Chandler KE, Lever M, Poole RL, Bullman H, Mughal MZ, et al. Pseudohypoparathyroidism type 1b due to paternal uniparental disomy of chromosome 20q. J Clin Endocrinol Metab. 2013;98(1):E103–8.PubMedGoogle Scholar
  329. 329.
    Williamson CM, Ball ST, Nottingham WT, Skinner JA, Plagge A, Turner MD, et al. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet. 2004;36(8):894–9.PubMedGoogle Scholar
  330. 330.
    Blomstrand S, Claësson I, Säve-Söderbergh J. A case of lethal congenital dwarfism with accelerated skeletal maturation. Pediatr Radiol. 1985;15:141–3.PubMedGoogle Scholar
  331. 331.
    Young ID, Zuccollo JM, Broderick NJ. A lethal skeletal dysplasia with generalised sclerosis and advanced skeletal maturation: Blomstrand chondrodysplasia. J Med Genet. 1993;30:155–7.PubMedCentralPubMedGoogle Scholar
  332. 332.
    Leroy JG, Keersmaeckers G, Coppens M, Dumon JE, Roels H. Blomstrand lethal chondrodysplasia. Am J Med Genet. 1996;63:84–9.PubMedGoogle Scholar
  333. 333.
    Loshkajian A, Roume J, Stanescu V, Delezoide AL, Stampf F, Maroteaux P. Familial Blomstrand Chondrodysplasia with advanced skeletal maturation: further delineation. Am J Med Genet. 1997;71:283–8.PubMedGoogle Scholar
  334. 334.
    den Hollander NS, van der Harten HJ, Vermeij-Keers C, Niermeijer MF, Wladimiroff JW. First-trimester diagnosis of Blomstrand lethal osteochondrodysplasia. Am J Med Genet. 1997;73:345–50.Google Scholar
  335. 335.
    Oostra RJ, Baljet B, Dijkstra PF, Hennekam RCM. Congenital anomalies in the teratological collection of museum Vrolik in Amsterdam, The Netherlands. II: Skeletal dysplasia. Am J Med Genet. 1998;77:116–34.PubMedGoogle Scholar
  336. 336.
    Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest. 1998;102(1):34–40.PubMedCentralPubMedGoogle Scholar
  337. 337.
    Zhang P, Jobert AS, Couvineau A, Silve C. A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J Clin Endocrinol Metab. 1998;83:3365–8.PubMedGoogle Scholar
  338. 338.
    Karaplis AC, Bin He MT, Nguyen A, Young ID, Semeraro D, Ozawa H, et al. Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology. 1998;139:5255–8.PubMedGoogle Scholar
  339. 339.
    Karperien MC, van der Harten HJ, van Schooten R, Farih-Sips H, den Hollander NS, Kneppers ALJ, et al. A frame-shift mutation in the type I parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand lethal osteochondrodysplasia. J Clin Endocrinol Metab. 1999;84:3713–20.PubMedGoogle Scholar
  340. 340.
    Karperien M, Sips H, Hvd H, Wijnaents L, Kindblom L, Papapoulos S, et al. Novel mutations in the type I PTH/PTHrP receptor causing Blomstrand lethal osteochondrodysplasia (abstract). J Bone Miner Res. 2001;16 Suppl 1:S549.Google Scholar
  341. 341.
    Hoogendam J, Farih-Sips H, Wynaendts LC, Lowik CW, Wit JM, Karperien M. Novel mutations in the parathyroid hormone (PTH)/PTH-related peptide receptor type 1 causing Blomstrand osteochondrodysplasia types I and II. J Clin Endocrinol Metab. 2007;92(3):1088–95.PubMedGoogle Scholar
  342. 342.
    Wysolmerski JJ, Cormier S, Philbrick W, Dann P, Zhang J, Roume J, et al. Absence of functional type 1 PTH/PTHrP receptors in humans is associated with abnormal breast development and tooth impactation. J Clin Endocrinol Metab. 2001;86:1788–94.PubMedGoogle Scholar
  343. 343.
    Ichikawa S, Lyles KW, Econs MJ. A novel GALNT3 mutation in a pseudoautosomal dominant form of tumoral calcinosis: evidence that the disorder is autosomal recessive. J Clin Endocrinol Metab. 2005;90(4):2420–3.PubMedGoogle Scholar
  344. 344.
    Ichikawa S, Imel EA, Sorenson AH, Severe R, Knudson P, Harris GJ, et al. Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene. J Clin Endocrinol Metab. 2006;91(11):4472–5.PubMedGoogle Scholar
  345. 345.
    Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004;36(6):579–81.PubMedGoogle Scholar
  346. 346.
    Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117(9):2684–91.PubMedCentralPubMedGoogle Scholar
  347. 347.
    Larsson T, Davis S, Garringer H, Mooney S, Draman M, Cullen M, et al. Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed. J Clin Endocrinol Metab. 2005;146:3883–91.Google Scholar
  348. 348.
    Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(10):5523–7.PubMedGoogle Scholar
  349. 349.
    Melhem R, Najjar S, Khachadurian A. Cortical hyperostosis with hyperphosphatemia: a new syndrome? J Pediatr. 1970;77:986–90.PubMedGoogle Scholar
  350. 350.
    Narchi H. Hyperostosis with hyperphosphatemia: evidence of familial occurrence and association with tumoral calcinosis. Pediatrics. 1997;99:745–8.PubMedGoogle Scholar
  351. 351.
    Frishberg Y, Araya K, Rinat C, Topaz O, Yamazaki Y, Feinstein Y, et al., editors. Hyperostosis-hyperphosphatemia syndrome caused by mutations in GALNT3 and associated with augmented processing of FGF-23. Philadelphia: American Society of Nephrology; 2004.Google Scholar
  352. 352.
    Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, et al. Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations. Am J Med Genet A. 2010;152a(4):896–903.PubMedCentralPubMedGoogle Scholar
  353. 353.
    Trump D, Thakker R. Inherited hypophosphataemic rickets. In: Thakker R, editor. Molecular genetics of endocrine disorders. London: Chapman and Hall; 1997. p. 123–51.Google Scholar
  354. 354.
    Glorieux F, Karsenty G, Thakker R. Metabolic bone disease in children. In: Avioli LV, Krane SM, editors. Metabolic bone disease. 3rd ed. New York: Academic; 1997. p. 759–83.Google Scholar
  355. 355.
    Econs M, McEnery P, Lennon F, Speer M. Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13. J Clin Invest. 1997;100:2653–7.PubMedCentralPubMedGoogle Scholar
  356. 356.
    Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87:4957–60.PubMedGoogle Scholar
  357. 357.
    Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;348(17):1656–63.PubMedGoogle Scholar
  358. 358.
    Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108(46):E1146–55.PubMedCentralPubMedGoogle Scholar
  359. 359.
    Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–9.PubMedCentralPubMedGoogle Scholar
  360. 360.
    Drezner MK. Phosphorus homeostasis and related disorders. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles in bone biology, vol. 1. 2nd ed. New York: Academic; 2002. p. 321–38.Google Scholar
  361. 361.
    Lipman M, Panda D, Bennett H, Henderson J, Shane E, Shen Y, et al. Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J Biol Chem. 1998;273:13729–37.PubMedGoogle Scholar
  362. 362.
    John M, Wickert H, Zaar K, Jonsson K, Grauer A, Ruppersberger P, et al. A case of neuroendocrine oncogenic osteomalacia associated with a PHEX and fibroblast growth factor-23 expressing sinusidal malignant schwannoma. Bone. 2001;29:393–402.PubMedGoogle Scholar
  363. 363.
    Seufert J, Ebert K, Müller J, Eulert J, Hendrich C, Werner E, et al. Octreotide therapy for tumor-induced osteomalacia. N Engl J Med. 2001;345:1883–8.PubMedGoogle Scholar
  364. 364.
    Imel E, Peacock M, Pitukcheewanont P, Heller H, Ward L, Shulman D, et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J Clin Endocrinol Metab. 2006;91:2055–61.PubMedGoogle Scholar
  365. 365.
    van Boekel G, Ruinemans-Koerts J, Joosten F, Dijkhuizen P, van Sorge A, de Boer H. Tumor producing fibroblast growth factor 23 localized by two-staged venous sampling. Eur J Endocrinol. 2008;158(3):431–7.PubMedGoogle Scholar
  366. 366.
    White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60(6):2079–86.PubMedGoogle Scholar
  367. 367.
    Imanishi Y, Hashimoto J, Ando W, Kobayashi K, Ueda T, Nagata Y, et al. Matrix extracellular phosphoglycoprotein is expressed in causative tumors of oncogenic osteomalacia. J Bone Miner Metab. 2012;30(1):93–9.PubMedGoogle Scholar
  368. 368.
    Consortium TH. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130–6.Google Scholar
  369. 369.
    Holm IA, Huang X, Kunkel LM. Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet. 1997;60(4):790–7.PubMedCentralPubMedGoogle Scholar
  370. 370.
    Rowe P, de Zoysa P, Dong R, Wang H, White K, Econs M, et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000;67:54–68.PubMedGoogle Scholar
  371. 371.
    Aono Y, Shimada T, Yamazaki Y, Hino R, Takeuchi M, Fujita T, et al., editors. The neutralization of FGF-23 ameliorates hypophosphatemia and rickets in Hyp mice. Meeting of the American Society for Bone and Mineral Research, Minneapolis; 2003.Google Scholar
  372. 372.
    Bowe A, Finnegan R, Jan de Beur S, Cho J, Levine M, Kumar R. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001;284:977–81.PubMedGoogle Scholar
  373. 373.
    Yamazaki Y, Tamada T, Kasai N, Urakawa I, Aono Y, Hasegawa H, et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res Off J Am Soc Bone Miner Res. 2008;23(9):1509–18.Google Scholar
  374. 374.
    Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124(4):1587–97.PubMedCentralPubMedGoogle Scholar
  375. 375.
    George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem. 1993;268(17):12624–30.PubMedGoogle Scholar
  376. 376.
    Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M, et al. Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem. 2003;278(19):17500–8.PubMedGoogle Scholar
  377. 377.
    Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet. 2007;8(10):762–75.PubMedGoogle Scholar
  378. 378.
    Perry W, Stamp T. Hereditary hypophosphataemic rickets with autosomal recessive inheritance and severe osteosclerosis. A report of two cases. J Bone Joint Surg Br. 1978;60-B:430–4.PubMedGoogle Scholar
  379. 379.
    Scriver C, Reade T, Halal F, Costa T, Cole D. Autosomal hypophosphataemic bone disease responds to 1,25-(OH)2D3. Arch Dis Child. 1981;56:203–7.PubMedCentralPubMedGoogle Scholar
  380. 380.
    Bastepe M, Shlossberg H, Murdock H, Jüppner H, Rittmaster R. A lebanese family with osteosclerosis and hypophosphatemia. J Bone Miner Res. 1999;14 Suppl 1:S558.Google Scholar
  381. 381.
    Ye L, Mishina Y, Chen D, Huang H, Dallas S, Dallas M, et al. Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem. 2005;280:6197–203.PubMedCentralPubMedGoogle Scholar
  382. 382.
    Feng JQ, Scott G, Guo D, Jiang B, Harris M, Ward T, et al. Generation of a conditional null allele for Dmp1 in mouse. Genesis. 2008;46(2):87–91.PubMedCentralPubMedGoogle Scholar
  383. 383.
    Liu S, Zhou J, Tang W, Menard R, Feng JQ, Quarles LD. Pathogenic role of Fgf23 in Dmp1-null mice. Am J Physiol Endocrinol Metab. 2008;295(2):E254–61.PubMedCentralPubMedGoogle Scholar
  384. 384.
    Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86(2):273–8.PubMedCentralPubMedGoogle Scholar
  385. 385.
    Prié D, Huart V, Bakouh N, Planelles G, Dellis O, Gérard B, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347:983–91.PubMedGoogle Scholar
  386. 386.
    Virkki L, Forster I, Hernando N, Biber J, Murer H. Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18:2135–41.Google Scholar
  387. 387.
    Lapointe JY, Tessier J, Paquette Y, Wallendorff B, Coady MJ, Pichette V, et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int. 2006;69(12):2261–7.PubMedGoogle Scholar
  388. 388.
    Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med. 2010;362(12):1102–9.PubMedGoogle Scholar
  389. 389.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Ntp2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998;95:5372–7.PubMedCentralPubMedGoogle Scholar
  390. 390.
    Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312:611–7.PubMedGoogle Scholar
  391. 391.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92.PubMedCentralPubMedGoogle Scholar
  392. 392.
    Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.PubMedCentralPubMedGoogle Scholar
  393. 393.
    Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab. 2006;91(10):4022–7.PubMedGoogle Scholar
  394. 394.
    Prader A, Illig R, Heierli E. An unusual form of primary vitamin D-resistant rickets with hypocalcemia and autosomal-dominant hereditary transmission: hereditary pseudo-deficiency rickets. Helv Paediatr Acta. 1961;16:452–68.Google Scholar
  395. 395.
    Fraser D, Kooh SW, Kind HP, Holick MF, Tanaka Y, DeLuca HF. Pathogenesis of hereditary vitamin-D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1 alpha,25-dihydroxyvitamin D. N Engl J Med. 1973;289(16):817–22.PubMedGoogle Scholar
  396. 396.
    Scriver CR. Vitamin D, dependency. Pediatrics. 1970;45(3):361–3.PubMedGoogle Scholar
  397. 397.
    Delvin EE, Glorieux FH, Marie PJ, Pettifor JM. Vitamin D dependency: replacement therapy with calcitriol? J Pediatr. 1981;99(1):26–34.PubMedGoogle Scholar
  398. 398.
    Scriver CR, Reade TM, DeLuca HF, Hamstra AJ. Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299(18):976–9.PubMedGoogle Scholar
  399. 399.
    DeLuca HF. Vitamin D metabolism and function. Arch Intern Med. 1978;138(Spec No):836–47.PubMedGoogle Scholar
  400. 400.
    Chesney RW, Rosen JF, Hamstra AJ, DeLuca HF. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.PubMedGoogle Scholar
  401. 401.
    Labuda M, Morgan K, Glorieux FH. Mapping autosomal recessive vitamin D dependency type I to chromosome 12q14 by linkage analysis. Am J Hum Genet. 1990;47(1):28–36.PubMedCentralPubMedGoogle Scholar
  402. 402.
    St-Arnaud R, Messerlian S, Moir JM, Omdahl JL, Glorieux FH. The 25-hydroxyvitamin D 1-alpha-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12(10):1552–9.Google Scholar
  403. 403.
    Fu GK, Lin D, Zhang MY, Bikle DD, Shackleton CH, Miller WL, et al. Cloning of human 25-hydroxyvitamin d-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11(13):1961–70.PubMedGoogle Scholar
  404. 404.
    Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338(10):653–61.PubMedGoogle Scholar
  405. 405.
    Yoshida T, Monkawa T, Tenenhouse HS, Goodyer P, Shinki T, Suda T, et al. Two novel 1alpha-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I1. Kidney Int. 1998;54(5):1437–43.PubMedGoogle Scholar
  406. 406.
    Wang JT, Lin CJ, Burridge SM, Fu GK, Labuda M, Portale AA, et al. Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63(6):1694–702.PubMedCentralPubMedGoogle Scholar
  407. 407.
    Wang X, Zhang MY, Miller WL, Portale AA. Novel gene mutations in patients with 1alpha-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.PubMedGoogle Scholar
  408. 408.
    Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, et al. Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298(18):996–9.PubMedGoogle Scholar
  409. 409.
    Marx SJ, Spiegel AM, Brown EM, Gardner DG, Downs Jr RW, Attie M, et al. A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1978;47(6):1303–10.PubMedGoogle Scholar
  410. 410.
    Liberman UA, Samuel R, Halabe A, Kauli R, Edelstein S, Weisman Y, et al. End-organ resistance to 1,25-dihydroxycholecalciferol. Lancet. 1980;1(8167):504–6.PubMedGoogle Scholar
  411. 411.
    Fujita T, Nomura M, Okajima S, Furuya H. Adult-onset vitamin D-resistant osteomalacia with the unresponsiveness to parathyroid hormone. J Clin Endocrinol Metab. 1980;50(5):927–31.PubMedGoogle Scholar
  412. 412.
    Liberman UA, Eil C, Marx SJ. Resistance to Vitamin D. In: Cohn DV, Fujita T, Potts Jr JT, Talmage RV, editors. Endocrine control of bone and calcium metabolism, International congress series 619, vol. 8A. Amsterdam: Exerpta Medica; 1984. p. 32–40.Google Scholar
  413. 413.
    Fraher LJ, Karmali R, Hinde FR, Hendy GN, Jani H, Nicholson L, et al. Vitamin D-dependent rickets type II: extreme end organ resistance to 1,25-dihydroxy vitamin D3 in a patient without alopecia. Eur J Pediatr. 1986;145(5):389–95.PubMedGoogle Scholar
  414. 414.
    Haussler MR, Manolagas SC, Deftos LJ. Evidence for a 1,25-dihydroxyvitamin D3 receptor-like macromolecule in rat pituitary. J Biol Chem. 1980;255(11):5007–10.PubMedGoogle Scholar
  415. 415.
    O’Malley BW. Steroid hormone action in eucaryotic cells. J Clin Invest. 1984;74(2):307–12.PubMedCentralPubMedGoogle Scholar
  416. 416.
    Eil C, Liberman UA, Rosen JF, Marx SJ. A cellular defect in hereditary vitamin-D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304(26):1588–91.PubMedGoogle Scholar
  417. 417.
    Eil C, Marx SJ. Nuclear uptake of 1,25-dihydroxy[3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc Natl Acad Sci U S A. 1981;78(4):2562–6.PubMedCentralPubMedGoogle Scholar
  418. 418.
    Haussler MR, Mangelsdorf DJ, Komm BS, et al. Molecular biology of the vitamin D hormone. In: Cohn DV, Martin TJ, Mennier PJ, editors. Calcium regulation and bone metabolism: basic and clinic aspects, vol. 9. Amsterdam: Elsevier; 1987. p. 465–74.Google Scholar
  419. 419.
    McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science. 1987;235(4793):1214–7.PubMedGoogle Scholar
  420. 420.
    Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, et al. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science. 1988;242(4886):1702–5.PubMedGoogle Scholar
  421. 421.
    Yoshizawa T, Handa Y, Uematsu Y, Sekine K, Takeda S, Yoshihara Y, et al. Disruption of the vitamin D receptor (VDR) in the mouse. J Bone Miner Res. 1996;11:S119.Google Scholar
  422. 422.
    Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology. 1998;139:4391–6.PubMedGoogle Scholar
  423. 423.
    Tsuchiya Y, Matsuo N, Cho H, Kumagai M, Yasaka A, Suda T, et al. An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J Clin Endocrinol Metab. 1980;51(4):685–90.PubMedGoogle Scholar
  424. 424.
    Rosen JF, Fleischman AR, Finberg L, Hamstra A, DeLuca HF. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatr. 1979;94(5):729–35.PubMedGoogle Scholar
  425. 425.
    Liberman UA, Eil C, Marx SJ. Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts. J Clin Invest. 1983;71(2):192–200.PubMedCentralPubMedGoogle Scholar
  426. 426.
    Castells G, Greig F, Fusi L, Finberg L, Yasmura A, Liberman U, et al. Vitamin D dependent rickets Type II (VDDRII) with alopecia. Treatment with mega doses of 1,25(OH)2D3 overcomes affinity defect in receptor for 1,25(OH)2D3. Pediatr Res. 1984;18:1174.Google Scholar
  427. 427.
    Balsan S, Garabédian M, Larchet M, Gorski AM, Cournot G, Tau C, et al. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest. 1986;77(5):1661–7.PubMedCentralPubMedGoogle Scholar
  428. 428.
    Tiosano D, Hadad S, Chen Z, Nemirovsky A, Gepstein V, Militianu D, et al. Calcium absorption, kinetics, bone density, and bone structure in patients with hereditary vitamin D-resistant rickets. J Clin Endocrinol Metab. 2011;96(12):3701–9.PubMedGoogle Scholar
  429. 429.
    Srivastava T, Alon US. Cinacalcet as adjunctive therapy for hereditary 1,25-dihydroxyvitamin D-resistant rickets. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28(5):992–6.Google Scholar
  430. 430.
    Scheinman SJ, Guay-Woodford LM, Thakker RV, Warnock DG. Genetic disorders of renal electrolyte transport. N Engl J Med. 1999;340(15):1177–87.PubMedGoogle Scholar
  431. 431.
    Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, et al. A common molecular basis for three inherited kidney stone diseases. Nature. 1996;379(6564):445–9.PubMedGoogle Scholar
  432. 432.
    Lowe CU, Terrey M, Mac LE. Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. AMA Am J Dis Child. 1952;83(2):164–84.PubMedGoogle Scholar
  433. 433.
    Silver DN, Lewis RA, Nussbaum RL. Mapping the Lowe oculocerebrorenal syndrome to Xq24-q26 by use of restriction fragment length polymorphisms. J Clin Invest. 1987;79:282–5.PubMedCentralPubMedGoogle Scholar
  434. 434.
    Leahey AM, Charnas LR, Nussbaum RL. Nonsense mutations in the OCRL-1 gene in patients with the oculocerebrorenal syndrome of Lowe. Hum Mol Genet. 1993;2(4):461–3.PubMedGoogle Scholar
  435. 435.
    Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17(3):324–6.PubMedGoogle Scholar
  436. 436.
    Mannstadt M, Magen D, Segawa H, Stanley T, Sharma A, Sasaki S, et al. Fanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations. J Clin Endocrinol Metab. 2012;97(10):E1978–86.PubMedCentralPubMedGoogle Scholar
  437. 437.
    Beighton P. Osteoglophonic dysplasia. J Med Genet. 1989;26(9):572–6.PubMedCentralPubMedGoogle Scholar
  438. 438.
    White K, Cabral J, Evans W, Ichikawa S, Davis S, Ornitz D, et al. A missense mutation in FGFR1 causes a novel syndrome: craniofacial dysplasia with hypophosphatemia (CFDH). Am J Hum Genet. 2005;76:361–67.Google Scholar
  439. 439.
    Farrow EG, Davis SI, Mooney SD, Beighton P, Mascarenhas L, Gutierrez YR, et al. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am J Med Genet A. 2006;140(5):537–9.PubMedGoogle Scholar
  440. 440.
    Hoffman W, Jüppner H, Deyoung B, O’dorisio M, Given K. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am J Med Genet A. 2005;134:233–6.PubMedGoogle Scholar
  441. 441.
    Heike C, Cunningham M, Steiner R, Wenkert D, Hornung R, Gruss J, et al. Skeletal changes in epidermal nevus syndrome: does focal bone disease harbor clues concerning pathogenesis? Am J Med Genet A. 2005;139:67–77.Google Scholar
  442. 442.
    Lim YH, Ovejero D, Sugarman JS, Deklotz CM, Maruri A, Eichenfield LF, et al. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet. 2014;23(2):397–407.PubMedCentralPubMedGoogle Scholar
  443. 443.
    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95.PubMedGoogle Scholar
  444. 444.
    Schwindinger W, Francomano C, Levine M. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci U S A. 1992;89:5152–6.PubMedCentralPubMedGoogle Scholar
  445. 445.
    Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T, et al. Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci. 2006;78(20):2295–301.PubMedGoogle Scholar
  446. 446.
    Waller S, Kurzawinski T, Spitz L, Thakker R, Cranston T, Pearce S, et al. Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr. 2004;163(10):589–94.PubMedGoogle Scholar
  447. 447.
    Garcia-Garcia E, Dominguez-Pascual I, Requena-Diaz M, Cabello-Laureano R, Fernandez-Pineda I, Sanchez-Martin MJ. Intraoperative parathyroid hormone monitoring in neonatal severe primary hyperparathyroidism. Pediatrics. 2014;134(4):e1203–5.PubMedGoogle Scholar
  448. 448.
    Germain-Lee EL, Groman J, Crane JL, de Beur SM J, Levine MA. Growth hormone deficiency in pseudohypoparathyroidism type 1a: another manifestation of multihormone resistance. J Clin Endocrinol Metab. 2003;88(9):4059–69.PubMedGoogle Scholar
  449. 449.
    Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Genet A. 2014;164a(6):1545–9.PubMedGoogle Scholar
  450. 450.
    Parfrey PS, Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J, et al. The clinical course of treated hyperparathyroidism among patients receiving hemodialysis and the effect of cinacalcet: the EVOLVE trial. J Clin Endocrinol Metab. 2013;98(12):4834–44.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amita Sharma
    • 1
  • Rajesh V. Thakker
    • 2
  • Harald Jüppner
    • 3
  1. 1.Department of Pediatrics, Pediatric Nephrology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Radcliffe Department of Medicine, Academic Endocrine UnitUniversity of Oxford, OCDEM (Oxford Centre for Diabetes, Endocrinology and Metabolism), The Churchill Hospital HeadingtonOxfordUK
  3. 3.Departments of Medicine and Pediatrics, Endocrine Unit and Pediatric Nephrology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations