Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Cancer Stem-Like Cells

  • Gaetano Finocchiaro
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_816-2

Synonyms

Definition

Cancer stem(-like) cells are those cells that possess the capacity for self-renewal and for causing the heterogeneous lineages of cancer cells that comprise the tumor.

Characteristics

The definition follows a consensus at a workshop on cancer stem(-like) cells (CSC) organized by the American Association for Cancer Research (AACR). There is considerable debate and some controversy on the CSC concept, so that a consensus definition is required. The importance of the debate is proportional to its relevance to the change in our perception of cancer, intrinsic to the CSC paradigm, implying that not all cancer cells are equal but that only a small fraction of them is endowed with the properties of perpetuating the disease. This hierarchical model has not only important biological consequences but also relevant therapeutic implications, as we discuss in this essay.

The CSC paradigm fits in a model of cancer as a caricature of an organ that is already...

Keywords

Acute Myeloid Leukemia Chronic Myeloid Leukemia Cancer Stem Cell Side Population Blast Crisis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848CrossRefPubMedGoogle Scholar
  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  4. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344CrossRefPubMedGoogle Scholar
  5. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951CrossRefPubMedGoogle Scholar
  6. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284CrossRefPubMedGoogle Scholar
  7. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337CrossRefPubMedGoogle Scholar
  8. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33CrossRefPubMedGoogle Scholar
  9. Jamieson CH, Ailles LE, Dylla SJ et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667CrossRefPubMedGoogle Scholar
  10. Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835CrossRefPubMedGoogle Scholar
  11. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037CrossRefPubMedGoogle Scholar
  12. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCentralCrossRefPubMedGoogle Scholar
  13. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI, Jones RJ (2004) Characterization of clonogenic multiple myeloma cells. Blood 103:2332–2336PubMedCentralCrossRefPubMedGoogle Scholar
  14. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110CrossRefPubMedGoogle Scholar
  15. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66:10247–10252CrossRefPubMedGoogle Scholar
  16. Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765CrossRefPubMedGoogle Scholar
  17. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115CrossRefPubMedGoogle Scholar
  18. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822CrossRefPubMedGoogle Scholar
  19. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Unit of Experimental Neuro-OncologyIstituto Nazionale Neurologico BestaMilanItaly