Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Mitogen-Activated Protein Kinase Kinase Kinases

  • Bruce D. Cuevas
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_7192-1

Synonyms

Definition

MAP3K proteins belong to a family of intracellular enzymes in human cells that participate in the regulation of the multiple cellular functions necessary for homeostasis of normal cells and tissues, including control of cellular proliferation, differentiation, apoptosis, and motility. Some of the genes that encode MAP3K proteins have been demonstrated to be mutated in cancers, and chemical agents that selectively inhibit this subset of enzymes are currently used as components of antitumor therapeutic regimens. The human MAP3K gene family consists of more than 20 members (Cuevas et al. 2007); the role of most MAP3K genes in either homeostasis or disease, including cancer, has not yet been fully investigated.

Characteristics

When active, MAP3K proteins initiate the sequential stimulation of at least two other protein kinase enzymes by activating a MAP kinase kinase (MAP2K) that, in turn, activates a MAP kinase (MAPK)...

Keywords

Mutant BRAF Hairy Cell Leukemia MAPK Protein V600 Mutant BRAF MAP3K Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi:10.1038/nature11412, Epub 2012 Sep 23CrossRefGoogle Scholar
  2. Carnahan J, Beltran PJ, Babij C, Le Q, Rose MJ, Vonderfecht S, Kim JL, Smith AL, Nagapudi K, Broome MA, Fernando M, Kha H, Belmontes B, Radinsky R, Kendall R, Burgess TL (2010) Selective and potent Raf inhibitors paradoxically stimulate normal cell proliferation and tumor growth. Mol Cancer Ther 9(8):2399–2410. doi:10.1158/1535-7163.MCT-10-0181, Epub 2010 Jul 27CrossRefPubMedGoogle Scholar
  3. Cronan MR, Nakamura K, Johnson NL, Granger DA, Cuevas BD, Wang JG, Mackman N, Scott JE, Dohlman HG, Johnson GL (2012) Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene 31(34):3889–3900CrossRefPubMedGoogle Scholar
  4. Cuevas BD, Abell AN, Johnson GL (2007) Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 26(22):3159–3171, ReviewCrossRefPubMedGoogle Scholar
  5. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180PubMedGoogle Scholar

Further Reading

  1. Chial H (2008) Tumor suppressor (TS) genes and the two-hit hypothesis. Nat Educ 1(1):177Google Scholar
  2. Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD (2008) MAP3Ks as central regulators of cell fate during development. Dev Dyn 237:3102–3114. doi:10.1002/dvdy.21750CrossRefPubMedGoogle Scholar
  3. Dragovich T, Rudin CM, Thompson CB (1998) Signal transduction pathways that regulate cell survival and cell death. Oncogene 17(25):3207–3213CrossRefPubMedGoogle Scholar
  4. Fan H (2011) Cell transformation by RNA viruses: an overview. Viruses 3(6):858–860. doi:10.3390/v3060858CrossRefPubMedPubMedCentralGoogle Scholar
  5. Johnson LN (2009) The regulation of protein phosphorylation. Biochem Soc Trans 37(4):627–641. doi:10.1042/BST0370627CrossRefPubMedGoogle Scholar
  6. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta (BBA) – Mol Basis Dis 1802(4):396–405CrossRefGoogle Scholar
  7. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260(5106):315–319CrossRefPubMedGoogle Scholar
  8. National Center for Biotechnology Information (2015) PubChem Substance Database; SID=135610765. http://pubchem.ncbi.nlm.nih.gov/substance/135610765. Accessed 12 Apr 2015
  9. National Center for Biotechnology Information (2015) PubChem Substance Database; SID=53787819. http://pubchem.ncbi.nlm.nih.gov/substance/53787819. Accessed 12 Apr 2015
  10. National Center for Biotechnology Information (2015) PubChem Compound Database; CID=5957. http://pubchem.ncbi.nlm.nih.gov/compound/5957. Accessed 12 Apr 2015
  11. Nature Education (2015) Cell signaling. http://www.nature.com/scitable/topicpage/cell-signaling-14047077. Accessed 12 Apr 2015
  12. Nature Education (2015) Knockout mouse. http://www.nature.com/scitable/definition/knockout-mouse-284. Accessed 12 Apr 2015
  13. Pellettieri J, Sánchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105. doi:10.1146/annurev.genet.41.110306.130244CrossRefPubMedGoogle Scholar
  14. Perkel JM (2013) LIFE SCIENCE TECHNOLOGIES: exome sequencing: toward an interpretable genome. Science 342(6155):262–264. doi:10.1126/science.342.6155.262, http://www.sciencemag.org/site/products/lst_20131011.pdf CrossRefGoogle Scholar
  15. V-Raf murine sarcoma viral oncogene homolog B. The GeneCards Human Gene Database. http://www.genecards.org/cgi-bin/carddisp.pl?gene=BRAF. Accessed 12 Apr 2015
  16. Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL (2006) Recent clinical failures in Parkinson’s disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 72(10):1197–1206CrossRefPubMedGoogle Scholar
  17. Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D (2013) Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci 34(5):283–289. doi:10.1016/j.tips.2013.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  18. Zebisch A, Troppmair J (2006) Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci CMLS 63(11):1314–1330CrossRefPubMedGoogle Scholar
  19. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18. doi:10.1038/sj.cr.7290105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Molecular Pharmacology and Therapeutics, Stritch School of MedicineLoyola University ChicagoMaywoodUSA