Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

BCR-ABL1

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_571-3

Definition

BCR-ABL1 is a hybrid (fusion or chimeric) gene that arises when genomic DNA of the BCR gene on chromosome 22 and of the ABL1 gene on chromosome 9 breaks and recombines. The BCR-ABL1 hybrid gene is transcribed to produce a hybrid mRNA that is subsequently translated into a functional BCR-ABL1 protein. The BCR-ABL1 mutation causes and is diagnostic of human chronic myeloid leukemia (CML) and some forms of acute leukemia, particularly acute lymphoblastic leukemia (ALL).

Characteristics

A Somatic Mutation of Bone Marrow Progenitor Cells

The BCR-ABL1 mutation is somatically acquired. Recombination between the BCR and ABL1 genes occurs in a self-renewing hematopoietic stem cell of the bone marrow and usually results in the microscopically visible chromosome translocation t(9;22)(q34.1;q11.2) (Fig. 1).

Keywords

Chronic Myeloid Leukemia Chronic Myeloid Leukemia Patient Blast Crisis Kinase Domain Mutation Chronic Myeloid Leukemia Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. Albano F, Anelli L, Zagaria A, Coccaro N, Casieri P, Rossi AR, Vicari L, Liso V, Rocchi M, Specchia G (2010) Non random distribution of genomic features in breakpoint regions involved in chronic myeloid leukemia cases with variant t(9;22) or additional chromosomal rearrangements. Mol Cancer 9:120PubMedCentralCrossRefPubMedGoogle Scholar
  2. Apperley JF (2015) Chronic myeloid leukaemia. Lancet 385(9976):1447–1459CrossRefPubMedGoogle Scholar
  3. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F, Hjorth-Hansen H, Hughes TP, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Martinelli G, Mayer J, Müller MC, Niederwieser D, Pane F, Radich JP, Rousselot P, Saglio G, Saußele S, Schiffer C, Silver R, Simonsson B, Steegmann JL, Goldman JM, Hehlmann R (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122(6):872–884CrossRefPubMedGoogle Scholar
  4. Bernt KM, Hunger SP (2014) Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 4:54PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chereda B, Melo JV (2015) Natural course and biology of CML. Ann Hematol 94(Suppl 2):S107–S121CrossRefPubMedGoogle Scholar
  6. Engreitz JM, Agarwala V, Mirny LA (2012) Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS One 7(9):e44196PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fielding AK (2015) Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: a broader range of options, improved outcomes, and more therapeutic dilemmas. Am Soc Clin Oncol Educ Book 35:e352–e359CrossRefGoogle Scholar
  8. Laurent E, Talpaz M, Kantarjian H, Kurzrock R (2001) The BCR gene and Philadelphia chromosome-positive leukemogenesis. Cancer Res 61(6):2343–2355PubMedGoogle Scholar
  9. Morris CM (2011) Chronic myeloid leukemia: cytogenetic methods and applications for diagnosis and treatment. Methods Mol Biol 730:33–61CrossRefPubMedGoogle Scholar
  10. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3):172–83Google Scholar
  11. Ross DM, O’Hely M, Bartley PA, Dang P, Score J, Goyne JM, Sobrinho-Simoes M, Cross NC, Melo JV, Speed TP, Hughes TP, Morley AA (2013) Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients. Leukemia 27(10):2105–2107CrossRefPubMedGoogle Scholar
  12. Roukos V, Misteli T (2014) The biogenesis of chromosome translocations. Nat Cell Biol 16(4):293–300CrossRefPubMedGoogle Scholar
  13. Soverini S, Branford S, Nicolini FE, Talpaz M, Deininger MW, Martinelli G, Müller MC, Radich JP, Shah NP (2014) Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Leuk Res 38(1):10–20CrossRefPubMedGoogle Scholar
  14. Wang JY (2014) The capable ABL: what is its biological function? Mol Cell Biol 34(7):1188–1197PubMedCentralCrossRefPubMedGoogle Scholar
  15. Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, Khoury HJ, Larson RA, Konopleva M, Cortes JE, Kantarjian H, Jabbour EJ, Kornblau SM, Lipton JH, Rea D, Stenke L, Barbany G, Lange T, Hernández-Boluda JC, Ossenkoppele GJ, Press RD, Chuah C, Goldberg SL, Wetzler M, Mahon FX, Etienne G, Baccarani M, Soverini S, Rosti G, Rousselot P, Friedman R, Deininger M, Reynolds KR, Heaton WL, Eiring AM, Pomicter AD, Khorashad JS, Kelley TW, Baron R, Druker BJ, Deininger MW, O’Hare T (2014) BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell 26(3):428–442PubMedCentralCrossRefPubMedGoogle Scholar

See Also

  1. (2001) DBL homology domain. In: Schwab M (ed) Encyclopedic reference of cancer. Springer, Berlin/Heidelberg, p 239. doi:10.1007/3-540-30683-8_411Google Scholar
  2. (2006) JAK/STAT. In: Ganten D et al (eds) Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin/Heidelberg, p 927. doi:10.1007/3-540-29623-9_7577Google Scholar
  3. (2008) Ikaros. In: Rédei GP (ed) Encyclopedia of genetics, genomics, proteomics and informatics. Springer Netherlands, p 956. doi:10.1007/978-1-4020-6754-9_8240Google Scholar
  4. (2009) Cytogenetic. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 813. doi:10.1007/978-3-540-47648-1_1466Google Scholar
  5. (2009) Reverse real-time quantitative PCR (RT-qPCR). In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin/Heidelberg, p 3535. doi:10.1007/978-3-540-29678-2_5136Google Scholar
  6. (2012) Acquired mutation. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 18. doi:10.1007/978-3-642-16483-5_38Google Scholar
  7. (2012) Actin. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 18–19. doi:10.1007/978-3-642-16483-5_42Google Scholar
  8. (2012) Activation loop. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 23. doi:10.1007/978-3-642-16483-5_50Google Scholar
  9. (2012) Breakpoint cluster region. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 485. doi:10.1007/978-3-642-16483-5_716Google Scholar
  10. (2012) Chromatin. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 825. doi:10.1007/978-3-642-16483-5_1125Google Scholar
  11. (2012) Chromosomal translocation t(9;22). In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 845–846. doi:10.1007/978-3-642-16483-5_1142Google Scholar
  12. (2012) Dasatinib. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1060. doi:10.1007/978-3-642-16483-5_1518Google Scholar
  13. (2012) DNA. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1129. doi:10.1007/978-3-642-16483-5_1663Google Scholar
  14. (2012) FISH. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 1415–1416. doi:10.1007/978-3-642-16483-5_2197Google Scholar
  15. (2012) GAP. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1501. doi:10.1007/978-3-642-16483-5_2324Google Scholar
  16. (2012) GEF. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1516. doi:10.1007/978-3-642-16483-5_2353Google Scholar
  17. (2012) GRB2. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1603. doi:10.1007/978-3-642-16483-5_2513Google Scholar
  18. (2012) Hematopoietic stem cell. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1645. doi:10.1007/978-3-642-16483-5_2619Google Scholar
  19. (2012) Hyperdiploidy. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1781. doi:10.1007/978-3-642-16483-5_2905Google Scholar
  20. (2012) Immunophenotyping. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1827. doi:10.1007/978-3-642-16483-5_3002Google Scholar
  21. (2012) Isoform. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 1920–1921. doi:10.1007/978-3-642-16483-5_3158Google Scholar
  22. (2012) JAK. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1923. doi:10.1007/978-3-642-16483-5_3170Google Scholar
  23. (2012) MRNA. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2382. doi:10.1007/978-3-642-16483-5_3856Google Scholar
  24. (2012) Non-homologous end joining. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2537. doi:10.1007/978-3-642-16483-5_4111Google Scholar
  25. (2012) Oligomerization domain. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2606. doi:10.1007/978-3-642-16483-5_4206Google Scholar
  26. (2012) PAX5. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 2798–2799. doi:10.1007/978-3-642-16483-5_4411Google Scholar
  27. (2012) PCR. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2803. doi:10.1007/978-3-642-16483-5_4417Google Scholar
  28. (2012) PDZ Domain. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2805. doi:10.1007/978-3-642-16483-5_4428Google Scholar
  29. (2012) Pleckstrin homology domains. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2919. doi:10.1007/978-3-642-16483-5_4620Google Scholar
  30. (2012) Polymorphism. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 2954–2955. doi:10.1007/978-3-642-16483-5_4673Google Scholar
  31. (2012) Recombination. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3208. doi:10.1007/978-3-642-16483-5_4996Google Scholar
  32. (2012) Rho. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3302. doi:10.1007/978-3-642-16483-5_5099Google Scholar
  33. (2012) Serine/threonine kinase. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3384. doi:10.1007/978-3-642-16483-5_5258Google Scholar
  34. (2012) STAT. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3502. doi:10.1007/978-3-642-16483-5_5481Google Scholar
  35. (2012) Transgenic. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3763. doi:10.1007/978-3-642-16483-5_5919Google Scholar
  36. (2012) Translin. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3773. doi:10.1007/978-3-642-16483-5_5940Google Scholar
  37. (2012) Tyrosine kinase. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3822. doi:10.1007/978-3-642-16483-5_6079Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Cancer Genetics ResearchUniversity of OtagoChristchurchNew Zealand