Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab


  • Janet Shipley
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_5094-3


Sarcomas are malignant tumors thought to be derived from mesenchymal cells and contain cells that resemble those of connective tissues in the body. Rhabdomyosarcomas (RMS) are sarcomas resembling developing skeletal muscle. They are a heterogeneous group of tumors and although rare, they are more prevalent in childhood than later life with an incidence of 4.3 cases per one million people younger than age 20 (Perez et al. 2011). Historically, they are broadly divided into two major histological subtypes:
  • Alveolar rhabdomyosarcoma (ARMS) – cellular architecture resembling the alveolar spaces of the lungs. Based on molecular evidence, a solid variant of ARMS has been described that does not show alveolar-like spaces.

  • Embryonal rhabdomyosarcoma (ERMS) – more frequent group and classical ERMS are seen predominantly in young children. Variants include botryoid and spindle cell.

In addition, a rarer pleomorphic subtype exists that is predominant in adults and is most often found in...


PAX7 Gene Small Round Cell Tumor Embryonal Rhabdomyosarcoma Alveolar Rhabdomyosarcoma Germ Line TP53 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Cao L, Yu Y, Bilke S et al (2010) Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 70:6497–6508CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen X, Stewart E, Shelat AA et al (2013) Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 24:710–724CrossRefPubMedPubMedCentralGoogle Scholar
  3. Keller C, Arenkiel BR, Coffin CM et al (2004) Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Inl4a/ARF and Trp53 loss of function. Genes Dev 18:2614–2626CrossRefPubMedPubMedCentralGoogle Scholar
  4. Kohsaka S, Shukla N, Ameur N et al (2014) A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 46:595–600CrossRefPubMedPubMedCentralGoogle Scholar
  5. Mercado GE, Barr FG (2007) Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances. Curr Mol Med 7:47–61CrossRefPubMedGoogle Scholar
  6. Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F, Concordet JP, Thway K, Oberlin O, Pritchard-Jones K, Delattre O, Delorenzi M, Shipley J (2012) PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 30:1670–1677CrossRefPubMedGoogle Scholar
  7. Perez EA, Kassira N, Cheung MC et al (2011) Rhabdomyosarcoma in children: a SEER population based study. J Surg Res 170:e243–e251CrossRefPubMedGoogle Scholar
  8. Shern JF, Chen L, Chmielecki J et al (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4:216–231CrossRefPubMedPubMedCentralGoogle Scholar
  9. Slater O, Shipley J (2007) Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 60:1187–1194CrossRefPubMedPubMedCentralGoogle Scholar
  10. Williamson D, Missiaglia E, de Reyniès A, Pierron G, Thuille B, Palenzuela G, Thway K, Orbach D, Laé M, Fréneaux P, Pritchard-Jones K, Oberlin O, Shipley J, Delattre O (2010) Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 28:2151–2158CrossRefPubMedGoogle Scholar

See Also

  1. (2012) Costello Syndrome. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 983. doi: 10.1007/978-3-642-16483-5_1347Google Scholar
  2. (2012) Loss of Heterozygosity. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, pp 2075-2076. doi: 10.1007/978-3-642-16483-5_3415Google Scholar
  3. (2012) MYCN. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, pp 2430-2431. doi: 10.1007/978-3-642-16483-5_3925Google Scholar
  4. (2012) NIH-3T3 Cells. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 2520. doi: 10.1007/978-3-642-16483-5_4084Google Scholar
  5. (2012) Sarcoma. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 3335. doi: 10.1007/978-3-642-16483-5_5161Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The Institute of Cancer Research, SuttonSurreyUK