Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Arylamine N-Acetyltransferases

  • Neville J. Butcher
  • Rodney F. Minchin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_408-3

Synonyms

NAT

Definition

The arylamine N-acetyltransferases (NATs; EC 2.3.1.5) are Phase II Enzymes that catalyze the transfer of an acetyl group from acetyl coenzyme A to aromatic amine, heterocyclic amine or hydrazine substrates. Acetylation catalyzed by NATs is an important biotransformation pathway for many drugs and cancer causing agents that we are exposed to on a daily basis.

Characteristics

There are three human NAT genes. Two encode functional proteins and are designated NAT1 and NAT2, and the third is a pseudogene (NATP1) that encodes a truncated nonfunctional protein. All are located on the short arm of chromosome 8 and have been mapped to 8p21.3–23.1, a region commonly deleted in human cancers. Both functional NATs are encoded by single intronless exons and the protein-coding regions share an 87 % nucleotide homology and are 870 base pairs in length. NAT1 and NAT2 are cytosolic proteins having an approximate molecular mass of 33 kDa and each consists of 290 amino acids,...

Keywords

Aromatic Amine Heterocyclic Amine Slow Acetylator Acetylator Status Acetylator Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Boukouvala S, Fakis G (2005) Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug Metab Rev 37:511–564CrossRefPubMedGoogle Scholar
  2. Butcher NJ, Boukouvala S, Sim E et al (2002) Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J 2:30–42CrossRefPubMedGoogle Scholar
  3. Hein DW, Doll MA, Fretland AJ et al (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9:29–42PubMedGoogle Scholar
  4. Minchin RF, Kadlubar FF, Ilett KF (1993) Role of acetylation in colorectal cancer. Mutat Res 290:35–42CrossRefGoogle Scholar

See Also

  1. (2012) Benzidine. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 384. doi:10.1007/978-3-642-16483-5_581Google Scholar
  2. (2012) Bioactivation. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 403. doi:10.1007/978-3-642-16483-5624Google Scholar
  3. (2012) Food-Derived Heterocyclic Amines. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1443. doi:10.1007/978-3-642-16483-5_2243Google Scholar
  4. (2012) Genotype. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1540. doi:10.1007/978-3-642-16483-5_2396Google Scholar
  5. (2012) Pharmacogenetics. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 2840. doi:10.1007/978-3-642-16483-5_4496Google Scholar
  6. (2012) Phenotype. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 2856. doi:10.1007/978-3-642-16483-5_4514Google Scholar
  7. (2012) Polymorphism. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, pp 2954–2955. doi:10.1007/978-3-642-16483-5_4673Google Scholar
  8. (2012) SNP. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 3460. doi:10.1007/978-3-642-16483-5_5395Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Biomedical SciencesUniversity of QueenslandSt LuciaAustralia