Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Antiangiogenesis

  • Dan G. Duda
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_309-3

Definition

The prevention or inhibition of the process of new blood vessel formation by endothelial cells from pre-existing adjacent vessels (angiogenesis).

Characteristics

Rationale for Antiangiogenesis for Therapy

Formation of new blood vessels from existing vasculature – angiogenesis – is a requirement for cancer growth and progression to metastasis (Carmeliet and Jain 2011). Preventing this process – antiangiogenesis – has emerged as a potential therapeutic strategy to halt cancer growth. This has prompted enormous interest in antiangiogenesis in the oncology field over the last few decades. The interest has rapidly extended in other areas of medicine, because angiogenesis plays a central role in other pathological states such as vascular diseases, benign tumors, obesity, or atherosclerosis. This has culminated with the approval of several antiangiogenic agents for cancer and macula degeneration (Ferrara 2010). Macular degeneration affects the retina. The retina is the paper-thin...

Keywords

Macular Degeneration Tumor Vasculature Antiangiogenic Agent Receptor Tyrosine Kinase Inhibitor Proangiogenic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ferrara N (2010) Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat Med. 16(10):1107–11PubMedCrossRefGoogle Scholar
  3. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 6(4):273–86PubMedCrossRefGoogle Scholar
  4. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 26(5):605–22PubMedPubMedCentralCrossRefGoogle Scholar
  5. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol. 6(6):327–38.PubMedPubMedCentralCrossRefGoogle Scholar

See Also

  1. (2012) Aptamer. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 257. doi:10.1007/978-3-642-16483-5_374Google Scholar
  2. (2012) Biomarkers. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 408–409. doi:10.1007/978-3-642-16483-5_6601Google Scholar
  3. (2012) Circulating progenitor cells. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 865. doi:10.1007/978-3-642-16483-5_1181Google Scholar
  4. (2012) Computed tomography. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 964–965. doi:10.1007/978-3-642-16483-5_1295Google Scholar
  5. (2012) Co-option. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 978. doi:10.1007/978-3-642-16483-5_6988Google Scholar
  6. (2012) Endothelial cells. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1251. doi:10.1007/978-3-642-16483-5_1896Google Scholar
  7. (2012) Glioblastoma. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1554. doi:10.1007/978-3-642-16483-5_2421Google Scholar
  8. (2012) Interleukin-8. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1896. doi:10.1007/978-3-642-16483-5_3100Google Scholar
  9. (2012) Intussusception. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1904. doi:10.1007/978-3-642-16483-5_6987Google Scholar
  10. (2012) Macula degeneration. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 2134–2135. doi:10.1007/978-3-642-16483-5_6985Google Scholar
  11. (2012) Polymorphism. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 2954–2955. doi:10.1007/978-3-642-16483-5_4673Google Scholar
  12. (2012) Radiotherapy. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3158. doi:10.1007/978-3-642-16483-5_4926Google Scholar
  13. (2012) Renal cancer. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 3225–3226. doi:10.1007/978-3-642-16483-5_6575Google Scholar
  14. (2012) Stromal-derived factor 1 alpha. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3544. doi:10.1007/978-3-642-16483-5_5536Google Scholar
  15. (2012) Sunitinib. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3562. doi:10.1007/978-3-642-16483-5_5575Google Scholar
  16. (2012) VEGF. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3906. doi:10.1007/978-3-642-16483-5_6174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Steele Laboratories for Tumor Biology, Department of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA