Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Immunoediting

  • Yvonne Paterson
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_2988-2

Definition

Changes in the immunogenicity of tumors due to the antitumor response of the immune system that result in the emergence of immune-resistant variants.

Characteristics

History

The concept of immunoediting is predicated on the insight that the immune system can recognize tumor cells. The notion that the immune system monitors the host, not only for pathogen invasion but also for neoplastic changes, arose early in the history of immunology and was first proposed by Paul Ehrlich in 1909 and then resurrected 50 years later by Burnet and Thomas. These early immunologists proposed that the immune system recognizes cells that have undergone neoplastic changes and eliminates them before they can form tumors, a concept known as immune surveillance. However, although this notion has been around for nearly a century, it was not until the twenty-first century that it was unequivocally demonstrated in murine models when Schreiber and colleagues, in 2001, examined the incidence of adenomas...

Keywords

Epidermal Growth Factor Receptor Chronic Myeloid Leukemia RAG2 Gene Post Organ Transplant Adaptive Cellular Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Chang CC, Campoli M, Ferrone S (2005) Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res 93:189–234CrossRefPubMedGoogle Scholar
  2. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phase – elimination, equilibrium and escape. Curr Opin Immunol 27:16–25PubMedCentralCrossRefPubMedGoogle Scholar
  3. Naidoo J, Page DB, Wolchok JD (2014) Immune modulation for cancer therapy. Br J Cancer. doi:10.1038/bjc.2014.348PubMedCentralPubMedGoogle Scholar
  4. Neeson P, Paterson Y (2006) Effects of the tumor microenvironment on the efficacy of tumor immunotherapy. Immunol Invest 35:359–394CrossRefPubMedGoogle Scholar
  5. Singh R, Paterson Y (2007) Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res 67:1887–1892CrossRefPubMedGoogle Scholar

See Also

  1. (2012) Autoimmunity. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 312. doi: 10.1007/978-3-642-16483-5_478Google Scholar
  2. (2012) B cell. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 331. doi: 10.1007/978-3-642-16483-5_508Google Scholar
  3. (2012) Follicular lymphoma. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1441. doi: 10.1007/978-3-642-16483-5_2240Google Scholar
  4. (2012) Gamma delta (γδ) T cells. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1493. doi: 10.1007/978-3-642-16483-5_2313Google Scholar
  5. (2012) Hairy cell leukemia. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1625. doi: 10.1007/978-3-642-16483-5_2553Google Scholar
  6. (2012) IL-12. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1807. doi: 10.1007/978-3-642-16483-5_2959Google Scholar
  7. (2012) Interferon gamma. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 1888. doi: 10.1007/978-3-642-16483-5_3092Google Scholar
  8. (2012) LMP2. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2068. doi: 10.1007/978-3-642-16483-5_3401Google Scholar
  9. (2012) Major histocompatibility complex. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2137. doi: 10.1007/978-3-642-16483-5_3500Google Scholar
  10. (2012) P53. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 2747. doi: 10.1007/978-3-642-16483-5_4331Google Scholar
  11. (2012) Perforin. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 2814. doi: 10.1007/978-3-642-16483-5_4443Google Scholar
  12. (2012) Recombinase activating gene-2. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3208. doi: 10.1007/978-3-642-16483-5_4995Google Scholar
  13. (2012) STAT. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3502. doi: 10.1007/978-3-642-16483-5_5481Google Scholar
  14. (2012) T cell. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3599. doi: 10.1007/978-3-642-16483-5_5645Google Scholar
  15. (2012) Tumor-associated antigen. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, pp 3807–3808. doi: 10.1007/978-3-642-16483-5_6017Google Scholar
  16. (2012) Tumor necrosis factor-related apoptosis-inducing ligand. In: Schwab M (ed) Encyclopedia of cancer, 3rd edn. Springer, Berlin/Heidelberg, p 3800. doi: 10.1007/978-3-642-16483-5_6043Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Microbiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA