Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Epidermal Growth Factor-like Ligands

  • Aleksandra Glogowska
  • Thomas Klonisch
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_1933-2

Synonyms

Definition

Epidermal growth factor (EGF-)-like family members bind to and activate EGF receptor tyrosine kinases ErbB-1, −2, −3, and −4, also named HER1-4. This triggers the activation of intracellular signal transduction pathways, resulting in cellular proliferation and differentiation. All members of the EGF-like family are produced as membrane-anchored precursors and are processed and released through the action of specific membrane-bound proteolytic enzymes of the sheddase family.

Epidermal Growth Factor- (EGF-) like familyconsists of at least twelve members: Epidermal growth factor (EGF), transforming growth factor alpha (TGFα), heparin binding-EGF like growth factor (HB-EGF), amphiregulin(AR), betacellulin (BTC), epiregulin (EPR), epigen, cripto, and neuregulins 1–4 (NRG1-4). These EGF-like members are defined by three characteristics: (a) they display high affinity binding to membrane-bound epidermal growth factor tyrosine...

Keywords

Epidermal Growth Factor Transform Growth Factor Alpha EGFR Activation Epidermal Growth Factor Expression Breast Adenocarcinoma Cell Line MCF7 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35–40CrossRefPubMedGoogle Scholar
  2. Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65CrossRefPubMedGoogle Scholar
  3. Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ (1998) Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 273:17258–17268CrossRefPubMedGoogle Scholar
  4. Burdick JS, Chung E, Tanner G, Sun M, Paciga JE, Cheng JQ, Washington K, Goldenring JR, Coffey RJ (2000) Treatment of Menetrier’s disease with a monoclonal antibody against the epidermal growth factor receptor. N Engl J Med 343:1697–1701CrossRefPubMedGoogle Scholar
  5. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562PubMedGoogle Scholar
  6. Dong J, Wiley HS (2000) Trafficking and proteolytic release of epidermal growth factor receptor ligands are modulated by their membrane-anchoring domains. J Biol Chem 275:557–564CrossRefPubMedGoogle Scholar
  7. Dunbar AJ, Goddard C (2000) Structure-function and biological role of betacellulin. Int J Biochem Cell Biol 32:805–815CrossRefPubMedGoogle Scholar
  8. Fiske WH, Threadgill D, Coffey RJ (2009) ERBBs in the gastrointestinal tract: recent progress and new perspectives. Exp Cell Res 315:583–601CrossRefPubMedGoogle Scholar
  9. Grandis JR, Tweardy DJ (1993) TGF-alpha and EGFR in head and neck cancer. J Cell Biochem Suppl 17F:188–191CrossRefPubMedGoogle Scholar
  10. Gschwind A, Hart S, Fischer OM, Ullrich A (2003) TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J 22:2411–2421CrossRefPubMedPubMedCentralGoogle Scholar
  11. Harris RC, Chung E, Coffey RJ (2003) EGF receptor ligands. Exp Cell Res 284:2–13CrossRefPubMedGoogle Scholar
  12. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M (1991) A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251:936–939CrossRefPubMedGoogle Scholar
  13. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M (1992) Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem 267:6205–6212PubMedGoogle Scholar
  14. Inui S, Higashiyama S, Hashimoto K, Higashiyama M, Yoshikawa K, Taniguchi N (1997) Possible role of coexpression of CD9 with membrane-anchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth. J Cell Physiol 171:291–298CrossRefPubMedGoogle Scholar
  15. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284:31–53CrossRefPubMedGoogle Scholar
  16. Komurasaki T, Toyoda H, Uchida D, Morimoto S (1997) Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 15:2841–2848CrossRefPubMedGoogle Scholar
  17. Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279:51141–51147CrossRefPubMedGoogle Scholar
  18. Mann GB, Fowler KJ, Gabriel A, Nice EC, Williams RL, Dunn AR (1993) Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73:249–261CrossRefPubMedGoogle Scholar
  19. Nair P (2005) Epidermal growth factor receptor family and its role in cancer progression. Curr Sci 88:890–898Google Scholar
  20. Normanno N, Ciardiello F, Brandt R, Salomon DS (1994) Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res Treat 29:11–27CrossRefPubMedGoogle Scholar
  21. Normanno N, De Luca A, Maiello MR, Bianco C, Mancino M, Strizzi L, Arra C, Ciardiello F, Agrawal S, Salomon DS (2004) CRIPTO-1: a novel target for therapeutic intervention in human carcinoma. Int J Oncol 25:1013–1020PubMedGoogle Scholar
  22. Ohchi T, Akagi Y, Kinugasa T, Kakuma T, Kawahara A, Sasatomi T, Gotanda Y, Yamaguchi K, Tanaka N, Ishibashi Y et al (2012) Amphiregulin is a prognostic factor in colorectal cancer. Anticancer Res 32:2315–2321PubMedGoogle Scholar
  23. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ozcelik C, Bit-Avragim N, Panek A, Gaio U, Geier C, Lange PE, Dietz R, Posch MG, Perrot A, Stiller B (2006) Mutations in the EGF-CFC gene cryptic are an infrequent cause of congenital heart disease. Pediatr Cardiol 27:695–698CrossRefPubMedGoogle Scholar
  25. Perry SW, Dewhurst S, Bellizzi MJ, Gelbard HA (2002) Tumor necrosis factor-alpha in normal and diseased brain: conflicting effects via intraneuronal receptor crosstalk? J Neurovirol 8:611–624CrossRefPubMedGoogle Scholar
  26. Rusch V, Klimstra D, Venkatraman E, Pisters PW, Langenfeld J, Dmitrovsky E (1997) Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 3:515–522PubMedGoogle Scholar
  27. Sasada R, Ono Y, Taniyama Y, Shing Y, Folkman J, Igarashi K (1993) Cloning and expression of cDNA encoding human betacellulin, a new member of the EGF family. Biochem Biophys Res Commun 190:1173–1179CrossRefPubMedGoogle Scholar
  28. Schneider MR, Antsiferova M, Feldmeyer L, Dahlhoff M, Bugnon P, Hasse S, Paus R, Wolf E, Werner S (2008) Betacellulin regulates hair follicle development and hair cycle induction and enhances angiogenesis in wounded skin. J Invest Dermatol 128:1256–1265CrossRefPubMedGoogle Scholar
  29. Schneider MR, Mayer-Roenne B, Dahlhoff M, Proell V, Weber K, Wolf E, Erben RG (2009) High cortical bone mass phenotype in betacellulin transgenic mice is EGFR dependent. J Bone Miner Res 24:455–467CrossRefPubMedGoogle Scholar
  30. Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K, Tokumaru S, Sayama K, Hashimoto K (2000) Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem 275:5748–5753CrossRefPubMedGoogle Scholar
  31. Strachan L, Murison JG, Prestidge RL, Sleeman MA, Watson JD, Kumble KD (2001) Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. J Biol Chem 276:18265–18271CrossRefPubMedGoogle Scholar
  32. Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun M (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem 272:31730–31737CrossRefPubMedGoogle Scholar
  33. Tang P, Steck PA, Yung WK (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 35:303–314CrossRefPubMedGoogle Scholar
  34. Wong WC, Dong M, Mak KL, Chan SY (2001) Prospects of EGF transgenic mice researches. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 33:473–476Google Scholar
  35. Wu W, O’Reilly MS, Langley RR, Tsan RZ, Baker CH, Bekele N, Tang XM, Onn A, Fidler IJ, Herbst RS (2007) Expression of epidermal growth factor (EGF)/transforming growth factor-alpha by human lung cancer cells determines their response to EGF receptor tyrosine kinase inhibition in the lungs of mice. Mol Cancer Ther 6:2652–2663CrossRefPubMedGoogle Scholar
  36. Wu WK, Tse TT, Sung JJ, Li ZJ, Yu L, Cho CH (2009) Expression of ErbB receptors and their cognate ligands in gastric and colon cancer cell lines. Anticancer Res 29:229–234PubMedGoogle Scholar
  37. Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8CrossRefPubMedGoogle Scholar
  38. Zheng W (2009) Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol 472:265–277CrossRefPubMedGoogle Scholar

See Also

  1. (2012) AKT. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 115. doi:10.1007/978-3-642-16483-5_163Google Scholar
  2. (2012) Apoptosis Pathways. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 244. doi:10.1007/978-3-642-16483-5_365Google Scholar
  3. (2012) Betacellulin. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 385. doi:10.1007/978-3-642-16483-5_591Google Scholar
  4. (2012) Cell Migration. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 738. doi:10.1007/978-3-642-16483-5_1006Google Scholar
  5. (2012) DNA. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1129. doi:10.1007/978-3-642-16483-5_1663Google Scholar
  6. (2012) Domain. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1150. doi:10.1007/978-3-642-16483-5_1702Google Scholar
  7. (2012) Epigen. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1283. doi:10.1007/978-3-642-16483-5_1939Google Scholar
  8. (2012) Epiregulin. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1291. doi:10.1007/978-3-642-16483-5_1954Google Scholar
  9. (2012) G-protein Couple Receptor. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1587. doi:10.1007/978-3-642-16483-5_2294Google Scholar
  10. (2012) MAPK. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 2167. doi:10.1007/978-3-642-16483-5_3532Google Scholar
  11. (2012) Phosphorylation. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 2870. doi:10.1007/978-3-642-16483-5_4544Google Scholar
  12. (2012) Tyrosine. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 3822. doi:10.1007/978-3-642-16483-5_6078Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health SciencesUniversity of ManitobaWinnipegCanada